![]() |
![]() |
#1 |
Jul 2014
Montenegro
2·13 Posts |
![]() |
![]() |
![]() |
![]() |
#2 |
"Forget I exist"
Jul 2009
Dumbassville
838410 Posts |
![]() |
![]() |
![]() |
![]() |
#3 |
Aug 2006
135338 Posts |
![]()
How far have you tested this?
|
![]() |
![]() |
![]() |
#4 |
Jul 2014
Montenegro
2·13 Posts |
![]() maxima code to test this conjecture : Code:
|
![]() |
![]() |
![]() |
#5 |
"Bob Silverman"
Nov 2003
North of Boston
22×5×373 Posts |
![]() |
![]() |
![]() |
![]() |
#6 |
Aug 2006
3×1,993 Posts |
![]() |
![]() |
![]() |
![]() |
#7 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
27·7·11 Posts |
![]()
P6(x) = x^6 - 6x^4 + 9x^2 - 2
(not -1), because P6(x) = P2(P3(x)), where P2(x) = x^2-2, P3(x) = x^3-3x P3k(x) = Pk(P3(x)), so S0 = P9k(3) = Pk(P9(3)) = Pk(5778) Anyway, it looks like a PRP test, but if one wanted to find violations of the test, then for large values it is best to implement P2(x) and P3(x) with FFT, and chain them. (P2(x) is the same as in LL test, so this implementation already exists.) Last fiddled with by Batalov on 2014-08-14 at 18:04 |
![]() |
![]() |
![]() |
#8 | |
"Forget I exist"
Jul 2009
Dumbassville
20C016 Posts |
![]() Quote:
Code:
(09:10) gp > (a+b)^6 %1 = a^6 + 6*b*a^5 + 15*b^2*a^4 + 20*b^3*a^3 + 15*b^4*a^2 + 6*b^5*a + b^6 (09:10) gp > (a-b)^6 %2 = a^6 - 6*b*a^5 + 15*b^2*a^4 - 20*b^3*a^3 + 15*b^4*a^2 - 6*b^5*a + b^6 (09:10) gp > %1+%2 %3 = 2*a^6 + 30*b^2*a^4 + 30*b^4*a^2 + 2*b^6 Code:
(09:16) gp > (x^2-4)*(x^2-4) %5 = x^4 - 8*x^2 + 16 (09:16) gp > (x^2-4)*(x^2-4)*(x^2-4) %6 = x^6 - 12*x^4 + 48*x^2 - 64 multiplying this by 2^-6 gives you: Code:
(09:35) gp > %9/64 %11 = x^6 - 6*x^4 + 9*x^2 - 1 Last fiddled with by science_man_88 on 2014-08-14 at 18:10 |
|
![]() |
![]() |
![]() |
#9 | |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
27×7×11 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#10 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
985610 Posts |
![]()
What is the reason for restriction k ≡ 3,9 (mod 10)?
It is easy to see that k ≡ 0,2,5,7 (mod 10) are not working (many counterexamples), but what about k ≡ 1,4,6,8 (mod 10)? None of them have counterexamples so far. Code:
# Pari/GP allocatemem(1800000000); KK=7000; v=vector(KK); v[1]=x; v[2]=x^2-2; for(i=3,KK,v[i]=x*v[i-1]-v[i-2]) P(k,x)=eval(v[k]) t6(k,n)=s=Mod(P(k,5778),k*6^n-1);for(k=1,n-2,s=s*(s^2-3);s=s^2-2);s==0 #for example 1 (mod 10) forstep(k=1,KK,10,for(n=3,500,if(t6(k,n) && !ispseudoprime(k*6^n-1),print(k" "n)))) |
![]() |
![]() |
![]() |
#11 | |
"Forget I exist"
Jul 2009
Dumbassville
100000110000002 Posts |
![]() Quote:
Last fiddled with by science_man_88 on 2014-08-14 at 22:29 Reason: added would be |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Lucasian Pseudoprimality Hypothesis for Specific Class of k 2^n-1 | primus | Miscellaneous Math | 14 | 2015-07-04 15:42 |
Pseudoprimality Hypothesis for Specific Class of Generalized Fermat Numbers | primus | Miscellaneous Math | 1 | 2015-03-25 22:18 |
Conjectured Primality Test for Specific Class of Mersenne Numbers | primus | Miscellaneous Math | 1 | 2014-10-12 09:25 |
Disproven Primality Test for Specific Class of kb^n-1 | primus | Computer Science & Computational Number Theory | 8 | 2014-08-21 15:16 |
Conjectured Primality Test for 2^p-1, (2^p+1)/3 and (2^2^n+1) | T.Rex | Math | 75 | 2007-09-04 07:53 |