20151117, 12:35  #1 
Sep 2011
3·19 Posts 
LLL in GP/Pari
I'm trying the qflll function Pari for lattice reduction. However, I'm not getting correct answers.
First, the wikipedia example: https://en.wikipedia.org/wiki/Lenstr...tion_algorithm Code:
(20:32) gp > qflll([1,1,3;1,0,5;1,2,6]) %50 = [4 5 0] [1 1 1] [ 1 1 0] Code:
(20:32) gp > qflll([1, 2, 3;4, 5, 6]) %51 = [1 4] [ 1 3] [ 0 0] As you can see, both results are incorrect. What am I doing wrong? Last fiddled with by paul0 on 20151117 at 12:35 
20151117, 13:01  #2  
Mar 2006
2^{3}×59 Posts 
Quote:
Code:
?qflll qflll(x,{flag=0}): LLL reduction of the vectors forming the matrix x (gives the unimodular transformation matrix T such that x*T is LLLreduced). flag is... Code:
(06:54) gp > x=[1,1,3;1,0,5;1,2,6] %1 = [1 1 3] [1 0 5] [1 2 6] (06:54) gp > qflll(x) %2 = [4 5 0] [1 1 1] [ 1 1 0] (06:54) gp > x*qflll(x) %3 = [0 1 1] [1 0 0] [0 1 2] 

20151117, 13:04  #3  
Sep 2011
39_{16} Posts 
Quote:
Last fiddled with by paul0 on 20151117 at 13:04 

Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
What is best in life? Is it PARI/GP?  JM Montolio A  Lounge  11  20180308 06:26 
Pari/GP to PFGW  carpetpool  Programming  6  20171221 06:04 
PARI vs GAP  skan  Miscellaneous Math  0  20121216 00:13 
pari  devarajkandadai  Programming  21  20120831 18:08 
64bit Pari?  CRGreathouse  Software  2  20090313 04:22 