![]() |
![]() |
#353 | |
Jan 2013
11011012 Posts |
![]() Quote:
Tried some Magma code, based on the GMP-ECM manual: (won't work, and I have no idea why) Code:
FindGroupOrder := function (p, s) K := GF(p); A := K ! (4*s^2-2); x := 2; b := x^3 + A*x^2 + x; E := EllipticCurve([0,b*A,0,b^2,0]); return FactoredOrder(E); end function; p := 26759964491830480636236398774973830719679139755537527; s := 3576746370; FindGroupOrder(p,s); Last fiddled with by prgamma10 on 2013-07-21 at 10:43 |
|
![]() |
![]() |
![]() |
#354 |
Feb 2005
22×32×7 Posts |
![]()
I've just got factorization of 102^103 + 1 = 103^2 * prp74 * prp130 with SNFS:
Code:
prp74 factor: 16577923085747542727498881886756397313868752518022676502052070512564532587 prp130 factor: 4371325251720559422253332573045929417056159075217221344318685656228760863793509418168865967108430523971884258595890393501349300723 |
![]() |
![]() |
![]() |
#355 |
Feb 2012
Paris, France
7×23 Posts |
![]()
A P58 I've found by ECM last week (which broke my previous personal record):
Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759) (160 digits) Using B1=260000000, B2=3178559884516, polynomial Dickson(30), sigma=2078429522 Step 1 took 1093707ms Step 2 took 363420ms ********** Factor found in step 2: 4269986142493572515510539041322472993083083125849142037361 Found probable prime factor of 58 digits: 4269986142493572515510539041322472993083083125849142037361 Probable prime cofactor ((3*10^204+7)/(2111*12379*80141*360193*36529453*83762087274812203759))/4269986142493572515510539041322472993083083125849142037361 has 102 digits A P53 found by ECM in step 1 (details here): Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (26*10^238-17)/(9*3*31*17914895525348997871953180891109) (206 digits) Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=4255384633 Step 1 took 648620ms ********** Factor found in step 1: 77799771931273889262077139536983524215512156277756839 Found probable prime factor of 53 digits: 77799771931273889262077139536983524215512156277756839 Probable prime cofactor ((26*10^238-17)/(9*3*31*17914895525348997871953180891109))/77799771931273889262077139536983524215512156277756839 has 153 digits |
![]() |
![]() |
![]() |
#356 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
100100011101102 Posts |
![]() Code:
Msieve v. 1.52 (SVN 886M) Mon Nov 11 01:03:57 2013 random seeds: 187198dc e395e0be factoring 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (253 digits) ...initial square root is modulo 4585129 sqrtTime: 7150 p117 factor: 211857628677636264166676902114066256198845941934180788645905936104472665184004014226679863567582409810768749673482061 p137 factor: 47201510100993602326827859852217555163129145401663287219390072454758015933440888931227171966024510895342063068118093723212737563878094459 |
![]() |
![]() |
![]() |
#357 |
Feb 2012
Paris, France
7·23 Posts |
![]() Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (10^248+3)/(19*223*126165718229274337) (228 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3741404180 Step 1 took 20467ms Step 2 took 9969ms ********** Factor found in step 2: 16031381961952347637116191005607843989279 Found probable prime factor of 41 digits: 16031381961952347637116191005607843989279 Composite cofactor ((10^248+3)/(19*223*126165718229274337))/16031381961952347637116191005607843989279 has 188 digits Code:
GMP-ECM 6.4.4 [configured with MPIR 2.6.0] [ECM] Input number is (10^248+3)/(19*223*126165718229274337*16031381961952347637116191005607843989279) (188 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1601899263 Step 1 took 14883ms Step 2 took 8283ms ********** Factor found in step 2: 12824921391934305400334065366552991673187 Found probable prime factor of 41 digits: 12824921391934305400334065366552991673187 Probable prime cofactor ((10^248+3)/(19*223*126165718229274337*16031381961952347637116191005607843989279))/12824921391934305400334065366552991673187 has 147 digits |
![]() |
![]() |
![]() |
#358 | |
Feb 2012
Paris, France
7×23 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#359 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
2·13·359 Posts |
![]()
It was about 25 thousand hours for sieving, two hrs for filtering, 24 hours LA (on an 4x8 MPI grid), and two hours per sqrt.
|
![]() |
![]() |
![]() |
#360 |
(loop (#_fork))
Feb 2006
Cambridge, England
13·491 Posts |
![]()
I ran 480 curves at 1e7 on {60..79}^512+1 over Christmas
No complete factorisations; a couple of new factors of interest: Code:
e62:Found probable prime factor of 30 digits: 415279119367083281900859703297 e77:Found probable prime factor of 33 digits: 341126180420063151380968669975553 e65:Found probable prime factor of 37 digits: 1869269849997935174077690896845848577 e75:Found probable prime factor of 38 digits: 13734192372070026415774074593138282497 e65:Found probable prime factor of 43 digits: 4769997756860644904012186212092431977208833 |
![]() |
![]() |
![]() |
#361 |
Mar 2006
Germany
2,879 Posts |
![]()
Hi,
the last days I've factored 2 Reverse Smarandache type numbers for n=103 and n=104. RSm(103).C160 = P53 * P108 Running yafu over night: prp53 = 22633393225636817509048253413614523936779379142819839 (curve 50 stg2 B1=260000000 sigma=4172026601 thread=1) Finished 400 curves using Lenstra ECM method on C160 input, B1=260M, B2=gmp-ecm Default RSm(104).C149 = P52 * P97 Running msieve: total time: 85.26 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel processors: 8, speed: 3.39GHz Windows-7-6.1.7601-SP1 Running Python 2.7 Both reported to World of numbers. Also shown on my page. |
![]() |
![]() |
![]() |
#362 |
Mar 2006
Germany
1011001111112 Posts |
![]()
Reverse Smarandache for n=105, C156 factored in:
r1=505609049620430043564818948424594740095377638674786008583783558052966689 (pp72) r2=1460218912197798897796479876892816487811802580775089126778648005904642208642833062339 (pp85) |
![]() |
![]() |
![]() |
#363 |
Aug 2004
New Zealand
2·3·37 Posts |
![]()
rSm(106) C167 is factored
Code:
GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM] Input number is 18177692096553830368675737725463580456289708131712261558393850692666532966863437168425047460718124572874681287411912149791448198810931545176347119222043777538034560927 (167 digits) Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=2318285213 Step 1 took 434355ms Step 2 took 41233ms ********** Factor found in step 2: 414338872062791501547344020582712133249557 Found probable prime factor of 42 digits: 414338872062791501547344020582712133249557 Probable prime cofactor 43871558577296772025736976053227175068325706197701002055248304277569975777948248915189631633909304741312836729962564905149411 has 125 digits |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Gratuitous OPN factors | wblipp | Factoring | 463 | 2019-05-30 07:19 |
Ungracious Factors Thread | FactorEyes | Factoring | 2 | 2011-04-09 05:45 |
Missing factors at the 'Known Factors' page | MatWur-S530113 | PrimeNet | 11 | 2009-01-21 19:08 |
JasonG's gratuitous C++ thread | jasong | Programming | 16 | 2006-11-07 01:03 |
Gratuitous hardware-related banana thread | GP2 | Hardware | 7 | 2003-11-24 06:13 |