![]() |
![]() |
#12 |
Jan 2007
Germany
30010 Posts |
![]()
Update:
The 2nd "smallest 35-digit prime 14-tuplet is also known. 10000000000009283441665311798539399+d,d=0,2,8,14,18,20,24,30,32,38,42,44,48,50 Last fiddled with by Cybertronic on 2021-01-31 at 08:18 |
![]() |
![]() |
![]() |
#13 |
Jan 2007
Germany
30010 Posts |
![]()
Update
// Both kinds of "smallest 25-digit prime 16-tuplet" are known // 1015074281315414986743013+d,d=0,4,6,10,16,18,24,28,30,34,40,46,48,54,58,60 1008037335701436528651167+d,d=0,2,6,12,14,20,26,30,32,36,42,44,50,54,56,60 computing time: 105h Hardware: 2 Ryzen 7 1700 @ 3GHz Last fiddled with by Cybertronic on 2021-02-04 at 21:18 |
![]() |
![]() |
![]() |
#14 |
Jan 2007
Germany
12C16 Posts |
![]()
Update
// Both kinds of "smallest 45-digit prime 12-tuplet" are known // 100000000000000000000000172106518341892028911+d,d=0,2,6,8,12,18,20,26,30,32,36,42 100000000000000000000000142880384538471179727+d,d=0,6,10,12,16,22,24,30,34,36,40,42 Last fiddled with by Cybertronic on 2021-02-07 at 20:36 |
![]() |
![]() |
![]() |
#15 |
Jan 2007
Germany
22×3×52 Posts |
![]()
45-digit prime 12-tuplet - maybe incorrect and double check now.
|
![]() |
![]() |
![]() |
#16 |
Jan 2007
Germany
22×3×52 Posts |
![]()
// Both kinds of "smallest 45-digit prime 12-tuplet" are known //
H/L: Offsetabschätzung nach Hardy-Littlewood für Primzahl 12-Tupel 100000000000000000000000172106518341892028911+d,d=0,2,6,8,12,18,20,26,30,32,36,42 ; H/L: 1e20 100000000000000000000000041408120385362420817+d,d=0,6,10,12,16,22,24,30,34,36,40,42 ; H/L: 1e20 |
![]() |
![]() |
![]() |
#17 |
Jan 2007
Germany
22·3·52 Posts |
![]()
Smallest 50-digit prime 12-tuplet to pattern d=0,2,6,8,12,18,20,26,30,32,36,42 is now known.
10000000000000000000000000000896396147387349765031+d Time to compute: ~7d Last fiddled with by Cybertronic on 2021-02-16 at 10:55 |
![]() |
![]() |
![]() |
#18 |
Jan 2007
Germany
22×3×52 Posts |
![]()
Searching for the set of "smallest 50-digit prime 12-tuplet" is done.
Here an overview of smallest 50-digit prime k-tuplet. [k=1 to 12]. k: number to pattern d 01: 10000000000000000000000000000000000000000000000009 02: 10000000000000000000000000000000000000000000008281+d d=0,2 03: 10000000000000000000000000000000000000000000136807+d d=0,2,6 03: 10000000000000000000000000000000000000000001447533+d d=0,4,6 04: 10000000000000000000000000000000000000000058537891+d d=0,2,6,8 / found by G. John Stevens (1995) 05: 10000000000000000000000000000000000000002625950761+d d=0,2,6,8,12 05: 10000000000000000000000000000000000000000108888657+d d=0,4,6,10,12 06: 10000000000000000000000000000000000000012427403607+d d=0,4,6,10,12,16 07: 10000000000000000000000000000000000001920433761121+d d=0,2,6,8,12,18,20 07: 10000000000000000000000000000000000005649726612769+d d=0,2,8,12,14,18,20 08: 10000000000000000000000000000000000079626461485831+d d=0,2,6,8,12,18,20,26 08: 10000000000000000000000000000000000119829260675203+d d=0,6,8,14,18,20,24,26 08: 10000000000000000000000000000000000030593919062857+d d=0,2,6,12,14,20,24,26 09: 10000000000000000000000000000000000500925570224521+d d=0,2,6,8,12,18,20,26,30 09: 10000000000000000000000000000000005212838536064887+d d=0,2,6,12,14,20,24,26,30 09: 10000000000000000000000000000000003526198250883003+d d=0,4,6,10,16,18,24,28,30 09: 10000000000000000000000000000000001731699431041809+d d=0,4,10,12,18,22,24,28,30 10: 10000000000000000000000000000000005620800916143211+d d=0,2,6,8,12,18,20,26,30,32 10: 10000000000000000000000000000000921015585010336777+d d=0,2,6,12,14,20,24,26,30,32 11: 10000000000000000000000000000021389429204344782841+d d=0,2,6,8,12,18,20,26,30,32,36 11: 10000000000000000000000000000012954750883079039103+d d=0,4,6,10,16,18,24,28,30,34,36 12: 10000000000000000000000000000896396147387349765031+d d=0,2,6,8,12,18,20,26,30,32,36,42 12: 10000000000000000000000000000929532973818094710897+d d=0,6,10,12,16,22,24,30,34,36,40,42 Last fiddled with by Cybertronic on 2021-02-24 at 05:18 |
![]() |
![]() |
![]() |
#19 |
Romulan Interpreter
Jun 2011
Thailand
937710 Posts |
![]()
Nice!
Congrats! (ignorant) Question: Are those all possible/minimal constellations? If not, which constellation is missing? Last fiddled with by LaurV on 2021-02-24 at 06:52 |
![]() |
![]() |
![]() |
#20 | |
Jan 2007
Germany
30010 Posts |
![]() Quote:
These are all minimal constellations. Searching was systematic. Update PDF-Document / 24th Feb. 2021 Last fiddled with by Cybertronic on 2021-02-24 at 07:36 |
|
![]() |
![]() |
![]() |
#21 |
Jan 2007
Germany
30010 Posts |
![]()
Next: smallest 40-digit prime 13-tuplet
preview, 1st (possible) kind is found: 1000000000000000000282197071067938130221+d,d=0,2,6,8,12,18,20,26,30,32,36,42,48 |
![]() |
![]() |
![]() |
#22 |
Jan 2007
Germany
12C16 Posts |
![]()
2nd smallest 40-digit prime 13-tuplet is found.
1000000000000000002713562652524314606953+d,d=00,04,06,10,16,18,24,28,30,34,40,46,48 BTW, during the searching , I can confirm that the Hardy-Littlewood estimating is correct. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Smallest k>1 such that Phi_n(k) is prime | sweety439 | And now for something completely different | 11 | 2021-01-02 06:23 |
Smallest k>1 such that Phi_n(k) is prime | sweety439 | Puzzles | 2 | 2020-02-11 19:58 |
Smallest prime with a digit sum of 911 | Stargate38 | Puzzles | 6 | 2014-09-29 14:18 |
Anyone else expecting a new prime 19-tuplet? | mart_r | Lounge | 3 | 2009-01-14 01:18 |
Smallest ten-million-digit prime | Heck | Factoring | 9 | 2004-10-28 11:34 |