![]() |
![]() |
#23 |
"Robert Gerbicz"
Oct 2005
Hungary
145910 Posts |
![]()
Yes, used those known factors, but how? I mean if M|N then we know only small squared residues mod M in the range of sqrt(M), but we need these residues mod N and not mod M. Ofcourse you can regard it mod N, but that gives only the boring average N/2 and not sqrt(N) for M<N.
|
![]() |
![]() |
![]() |
#24 | |
"Robert Gerbicz"
Oct 2005
Hungary
5B316 Posts |
![]() Quote:
OK, take my challenge factor my GRSA100 [G means Gerbicz], n=p*q number with 100 digits. You can use "your" method, and even algebra, but not QS, so use only the listed residues. For non-square i numbers in R[i] you'll see a number for that (R[i]^2)==i mod n and 0<R[i]<n/2. There are 90 such entries in the table. Code:
n=5641726904028141775845201429406221159866034862174979444379946384606770562756851889104848796957610561; R=[0,\ 1724787299442916282530419476907188353251548036461272822934649404908504673348028719488713834536774342,\ 359684321313109739256185919500775281026592821969952494851581538281575016488386915664780394119626941,\ 0,\ 2449981082504500819548338992168375924202065105032128305393163805191606193571705282348368987169527380,\ 2358554243531504393621070602313350737057478207045090369281690466916102713438781277432402838555167448,\ 390175394657631332943856025917481268727700364232394841683611192458295897247969190984259204525778169,\ 2192152305142309210784362475591844453362938789252433798510647574789761216060794450127421127884061877,\ 0,\ 1156110835286181739623845909824134904515693395622957967328584010777191653653375457317216979673556745,\ 1530890379806876412364407519863516906937805540243017153445939858655965011243048407589357924467375299,\ 719368642626219478512371839001550562053185643939904989703163076563150032976773831329560788239253882,\ 993656806500668237494066248981456477379136691528494083263722321278545019542666959390188581549404327,\ 41972932252078733786411392193850739254125187826020868468159586398489932340822626329878684623034449,\ 1238594643127537333600674043927013116281873323596573271248617344306328230783380352951595726936031450,\ 0,\ 721308171746071475783857447934200070077020502839056616282064146807928209508683200216759132027583550,\ 467365005699392928253942998684656100111390752791160975575998169881256542712765730638707293347287535,\ 1998083943647634022258404875194871979379024509508313973060671415004953353371852013664957487743129868,\ 741764739019140136748523445069469311461904652110722833593618774223558175613441324408110822618555801,\ 296250730824402777550881385555530865232856817203420454763807451552264858623296474827027625973028145,\ 1413014649035063840681817226569368139480491808934360476500777887552681973328857294786522903055836857,\ 1912109344392966499413722898366165729719564255121533445472315682586577978890003837485217050482802195,\ 924618416965132988603060224779519685751078448084798705816565450774565135879289334240043119847275665,\ 0,\ 2104789956563449278016408845463001757977108977340341399931270577001039738099620093021636868685773019,\ 1079052963939329217768557758502325843079778465909857484554744614844725049465160746994341182358880823,\ 780350789315262665887712051834962537455400728464789683367222384916591794495938381968518409051556338,\ 1920962314548187414404749956485035895526466368765695047719719735751835764099472200036846720588431522,\ 1498817391180309345093813578116349292650239965171901018151796862258400687339680999507207270392910239,\ 629415540979092824793178050152469660417992500734821938933676248961375207209872647421369427669502711,\ 1257422293743523354276476478222532253140157283670111847358651235027248130635262988850006541189486807,\ 1675897025662103484083299155488804441042032848315678452133728916474433559647867318455618463422816941,\ 844935067414906843320080217809005094478562707841965081384460936529515279291725159118461763647338479,\ 1358678784682613683223451395478262157189834280918551961822679376033128686768679094592686643715445381,\ 0,\ 2087449601798123095637386117853456241805100185145629298763245773975328426368149239773626358086115211,\ 1672184719946396578002518224358803248216330082804822380109724679271933513717223609249697903099745586,\ 819120670054020056849840239994777044216281311370178329721066482534580146238666409661934519865839185,\ 2312221670572363479247691819648269809031386791245915934657168021554383307306750914634433959347113490,\ 528460105714441456949830015923922478885927616317956741939086525891617548566856121908087769342470169,\ 1431372653825483478531539537432955252788510461426583821223322109609262726223070851006524971281025086,\ 1145852483499087529930900447334361713547713235082158600029310353113250184833992973531166573042992191,\ 2579946144414388951116386389679187345990423781688945137488066667294840540270755073926132948022859963,\ 1708216343485360682799815547098906612740160452921405471799545030968048017958263957940258164550971579,\ 13928167618377028939953111263300574929007618532288397910298311607019491944052338856710892379176271,\ 2558534590889096592428524893313015672665040363971525365351687435809929306279180089355968686258469215,\ 1438737285252438957024743678003101124106371287879809979406326153126300065953547662659121576478507764,\ 0,\ 2659517310841702139038305474276500553474329542043594774086645744671017758773560180766128421231349412,\ 733748737533186416746940643404616944321787134236974148782098799514794216886882565215389554635353268,\ 1987313613001336474988132497962912954758273383056988166527444642557090039085333918780377163098808654,\ 2710411845089475403253673116020303970708986578894735414427353679704693625010836950564380236914914290,\ 1433935826566371405018010377533831051306399758960291663465125016141537577559491943192359718707891783,\ 1489561332222776899743998807719740654391635622500884081130760240613288291561361597904450505329551640,\ 83945864504157467572822784387701478508250375652041736936319172796979864681645252659757369246068898,\ 647494529600298347376213570747206994181790595140394188873237192845969140043306206010015127190649168,\ 1878024301997290884980507953343855813998348425948804765689008229024329777085193141031035108054544484,\ 489244794713864057868751844974220947473363707460769543944426872605972334635157265674124119403749172,\ 2477189286255074667201348087854026232563746647193146542497234688612656461566760705903191453872062900,\ 2550677240251362573790947558322216257122857325584483624666130851777051922595615104484157105043429367,\ 996203281872260629880091547041017586256942794887971591347487664162409318538956665804993167800620672,\ 1170526183972893998831568077752443806183101092697184525050833577374887691743907572952777613577334507,\ 0,\ 194115772909817878221267000746315555794502589821824774096551343101305562885152788772256860288964661,\ 1478310094942195803782320254171742162557020260286218938737245012228688017630800988889765826967916608,\ 755762084644050345543657516594772673068428776359209967986976455315601395990722916902332664032586999,\ 1442616343492142951567714895868400140154041005678113232564128293615856419017366400433518264055167100,\ 970087421665217050504355734630101903751222897855725085446170823722400800030530530463976889622753603,\ 2258363182310470121985251088986607701828044783968639213535429926543812089936538055055864143137996841,\ 505237968204243143507781511377361535697235874290149443691172953990432820515699803875232158135519869,\ 934730011398785856507885997369312200222781505582321951151996339762513085425531461277414586694575070,\ 2752437151274189888797602162289757003165763631591151802771415935265582403910914494220774844824601319,\ 901136759035775964493211511556424598803761504184276680378812101007921785207166825187800215743527256,\ 1798421606565548696280929597503876405132964109849762474257907691407875082441934578323901970598134705,\ 1645559016732873731328391679016477201107985843158351498258603554596863856013147861774933821471350825,\ 2608599486067529477749547436944266239395321166256667985829261125233001746648999634476879028144272290,\ 561594924957049541326915503294955933418447719057942229643794434808747352197284777306200445405099872,\ 1227347075664110527518409280758842432864146010054081706435269414352373708380509747948879240187711945,\ 1483529478038280273497046890138938622923809304221445667187237548447116351226882648816221645237111602,\ 0,\ 55511896333275538255191573991142686574850770785795892692892378531374503374412642845127360416095129,\ 1754752831202733386919840695284599838762026962575048777997974506975942622749485152359238373471068688,\ 592501461648805555101762771111061730465713634406840909527614903104529717246592949654055251946056290,\ 1322555086352826079784267766790783729865179440628149883604261236902120193480527341985415991109090268,\ 2045721198097073650788028350920171343764499132137162126416766027652670460367781374427291809548481867,\ 1558247225534553615696157965307476824240033277800837556494488104288693591301012862360986180251117686,\ 2815697605958014094481566976267484880905051244306258491378390609501406616099137299531802990845936847,\ 737481072500711764292361728102562205408606776323467874371941871459477557892232848007425492097412459,\ 2173394398169596556973663699933816446318954675306105542394194352275195601796725517153197857936940326,\ 2092595224606892471961611544465919482650603420787467161244534465626890705248340310131633789654111485,\ 1817508215242208777017755632673889700426906351931912553435315019433614604976844214134414695992006171,\ 1427326433691254285622493404404651048616377881032906631406157982337285432596799322530438815908602856,\ 162469087089121134101412923772808595682249765622144089053707692770776357297867264644603275918155681,\ 1063589089261490328568118839222958933392430139783226832089169477321103241398936156296817757465200062,\ 1849236833930265977206120449559039371502156896169597411633130901549130271758578668480086239694551330,\ 265246320666174388926650203078211162021307950424593146837352843520135873532090441270961851682367814,\ 790057288044130426022533479537876153028766530878950871782653065145991587922497258211299247842199272,\ 1049055764607512538751978869815670439052618241445927984042126808638875529027706666336775023555484664,\ 0]; sum(i=1,100,issquare(i)==0&&(R[i]^2)%n==i&&0<R[i]&&R[i]<n/2) %3 = 90 Last fiddled with by R. Gerbicz on 2021-02-19 at 10:44 Reason: added R[100]=0 |
|
![]() |
![]() |
![]() |
#25 | |
Apr 2020
2·32·13 Posts |
![]() Quote:
We can easily find lots of values of a with a^2 mod M in the right range, so we can find one such that y is a quadratic residue mod p for each p dividing k. We can quickly find square roots modulo a prime, so do this for each p. Then use CRT to solve the congruences mod each p and mod M, and we have our x. |
|
![]() |
![]() |
![]() |
#26 | |
"Robert Gerbicz"
Oct 2005
Hungary
145910 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#27 |
Feb 2017
Nowhere
448410 Posts |
![]()
If I did my sums correctly, for Fermat numbers Fn with n > 1,
x = (Fn- 1)/(Fn-2 - 1)*Fn-1 (mod Fn) satisfies x^2 == 2 (mod Fn). |
![]() |
![]() |
![]() |
#28 |
"Robert Gerbicz"
Oct 2005
Hungary
1,459 Posts |
![]() |
![]() |
![]() |
![]() |
#29 | |
Feb 2017
Nowhere
22·19·59 Posts |
![]() Quote:
So we've got a square root of Mod(2, u^4 + 1) which can be re-expressed as Mod(u^3 - u, u^4 + 1)^2 = Mod(2, u^4 + 1). Perhaps even more obvious is Mod(x, x^2 + 1)^2 = Mod(-1, x^2 + 1). And just so the Mersenne numbers don't feel left out, we have Mod(2*x, 2*x^2 - 1)^2 = Mod(2, 2*x^2 - 1). Having modulo square roots of even the smallest possible nontrivial quadratic residue is unlikely to help factor evaluations of these polynomials at integer arguments: According to the Bunyakovsky conjecture, they all assume infinitely many prime values for integer arguments, and the Bateman-Horn conjecture gives asymptotic estimates. |
|
![]() |
![]() |
![]() |
#30 |
Romulan Interpreter
Jun 2011
Thailand
222508 Posts |
![]()
Ha ha, that's dirty. Bad Robert!
![]() You can easily get any relation and multiply it with constants to have all dependent, which won't be the case in real life, when you would get them "random" (therefore you can find some independent). Last fiddled with by LaurV on 2021-02-23 at 11:25 |
![]() |
![]() |
![]() |
#31 | |
Feb 2017
Nowhere
22×19×59 Posts |
![]() Quote:
Once upon a time, long long ago, the numbers under consideration were small enough that this approach was actually useful. Primes with a given quadratic residue in a limited range could be encoded in Hollerith cards, which were called "factor stencils." Each stencil excluded about half the primes in its range, so stacking 10 stencils corresponding to known residues for primes in that range would reduce the number of candidates in that range by a factor of roughly 1024. A Hollerith card had 80 columns of 10, so one card could accommodate a range of 800 primes. Alas, I just checked the link I gave some time ago from which I downloaded Albert Beiler's book Recreations in the Theory of Numbers which described these things, and got the dreaded Error 404. |
|
![]() |
![]() |
![]() |
#32 | |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
2·3·839 Posts |
![]() Quote:
Some of the engineers using the 24-bit Harris Datacraft DC6024 at UW-Madison in the 1970s punched their program output in binary using all 12 rows/column, two columns/24-bit word for subsequent use. There were fully punched reliability test cards for card readers. |
|
![]() |
![]() |
![]() |
#33 |
"Daniel Jackson"
May 2011
14285714285714285714
23·34 Posts |
![]()
Since RMLabrador's formula seems to be too slow/useless, I've posted the factors to the DB number I linked to in post #19.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Riesel Primes k*2^n-1, k<300 [Part II] | Kosmaj | Riesel Prime Search | 1027 | 2021-04-20 08:23 |
I'm sure this is an ID-10-T error on my part | petrw1 | PrimeNet | 1 | 2017-09-25 23:12 |
Numbers in Tables : Part 2 | wustvn | Puzzles | 9 | 2007-12-31 05:14 |
Two PC's looking for part-time work | OmbooHankvald | Software | 8 | 2005-07-23 01:23 |
Circles part 2 | mfgoode | Puzzles | 10 | 2004-12-27 15:17 |