![]() |
![]() |
#1 |
"Roman V. Makarchuk"
Aug 2020
Ukraine
23·5 Posts |
![]()
Hi,
Let suppose we can find the values of x that x^2 mod p=a is less than the square root of p; and we can find many x, sqrt(p)< x<p for all of them x^2 mod p<Sqrt(p). I find an ultra fast method to find such x. For example, (one of RSA numbers)) Code:
p=233108530344407544527637656910680524145619812480305449042948611968495918245135782867888369318577116418213919268572658314913060672626911354027609793166341626693946596196427744273886601876896313468704059066746903123910748277606548649151920812699309766587514735456594993207 x,mod(x^2,p)/Sqrt(p) 2058686077730335973119191772849610782168405045509730859997324354659105999516762083568162982423079976943206854365767157315516369668063 0.014668356162430803200 465659067497421238677328743309425532948414157918754093707381666107398154777123979447812311531941689774171117730185960112937235923453 0.020903533758495456444 178506530939493217560703628068758041558822758826119595236870791706219502364542126714088093427241002753242504805175833751952413529673 0.024773825779890181770 4641967788565072861639467872680135512345751896450204457826578762033149163538308529904765857398517579832616621864977921442189554255818 0.013449472303315199821 If we find millions or billions of x^2 mod p =a<sqrt(p) (and keep in the mind, that value of a CAN be small, till to the 1), factoring them and find the smooth numbers and make a^2=b^2 mod p by the standart way..., even write this boring, must be a better way in the terms of the speed. Now, I have an exponentially fast method of find x^2 mod p<sqrt(p) and just repeating, we can find x^2 mod p<<<sqrt(p). Moreover, we can, step by step, find out all of the sequence a0=1< a1<a2<a3 ... were a(n)=x(n)^2 mod p and take the full square directly from the small a)), they certainly exist, and they are rare. So it's take a time for me to develop further solution, and its will be, i'm full of ideas)) The end of Part 1))). P.S. You can give me any number and i give x for x^2 mod p<sqrt(p) Amount of digits doesn't much matter Code:
p=2^4096+1 x,(x^2 mod p)/sqrt(p) 3712941318503918005105030106698606420229383624881191830162165861886558\ 7621096498935662708985340818440182303033428361071260472433079179299904\ 5898956930863243903312449417053573024624956732844097342095100976245222\ 8945444607125843617455321605370254188907059311308740355146299074772673\ 8852185662490824156867498901807597567246290162526739899410091061271255\ 7513622236226890779289018083259552975209723899635216121434385254832044\ 4428801625211513067913178383256605162387940898020911006878770607989968\ 5720682045701349502161359170383212098999340892390391908728652321508616\ 6497101320641194353180333822491058332699915473487467860054, 0.551927 Last fiddled with by Dr Sardonicus on 2021-02-17 at 14:53 Reason: Added code tags and as indicated |
![]() |
![]() |
![]() |
#2 | |
Jun 2003
173 Posts |
![]() Quote:
Last fiddled with by Dr Sardonicus on 2021-02-17 at 14:49 Reason: Added code tags to quote from OP |
|
![]() |
![]() |
![]() |
#3 |
"Roman V. Makarchuk"
Aug 2020
Ukraine
23×5 Posts |
![]()
Thank You!
its copy paste issue, i'm take p from wrong window))) p must be another one (RSA too) Code:
p=22112825529529666435281085255026230927612089502470015394413748319128822941402001986512729726569746599085900330031400051170742204560859276357953757185954298838958709229238491006703034124620545784566413664540684214361293017694020846391065875914794251435144458199 For p = 233108530344407544527637656910680524145619812480305449042948611968\ 4959182451357828678883693185771164182139192685726583149130606726269113\ 5402760979316634162669394659619642774427388660187689631346870405906674\ 6903123910748277606548649151920812699309766587514735456594993207; must be 60156270039511115962524926339991761626930002124045078363906852618375471069499069517846923803563793649034201018868746724117680039728063728 0.011525820312644952861 30078135019755557981262463169995880813465001062022539181953426309187735534749534758923461901781896824517100509434373362058840019864031864 0.002881455078161238215 171804156903346119540741272009825446625305311264573842190606762378201248528539019757177995458173105109166645170180840926337803253037650057 0.022588388417496262820 81316397926552700985823695999486722656065596613130992916952631635266196647359422855140308702734512486889436591283194593320474521674372517 0.007428553157895737811 81316397926552700985823695999486722656065596613130992916952631635266196647359422855140308702734512486889436591283194593320474521674372517 0.007428553157895737811 172717586959853403019922623690582390212941301508469115711272491628955425690879646174237480762783658726969630321150895295203160409047411620 0.015557098233472417853 Last fiddled with by Dr Sardonicus on 2021-02-17 at 14:49 Reason: Added code tags |
![]() |
![]() |
![]() |
#4 |
Apr 2020
111001102 Posts |
![]()
Right, if N is the number we want to factor, we can find these very quickly by looking for values of k where sqrt(kN) is close to an integer.
But the problem isn't finding values of x where x^2 mod N is small: it's not hard to find lots of x for which it's around the size of sqrt(N). The difficulty comes from finding values where x^2 mod N is smooth. For this, you want numbers that are amenable to sieving, which is what QS does - and even then, it quickly becomes impractical for N above 100 digits as smooth numbers around sqrt(N) get rarer. For RSA-260 or 270, "millions and billions" of x would just be a drop in the ocean. In addition, trying x = nearest integer to sqrt(kN) does initially find some values of x^2 mod N that are a bit smaller than sqrt(N). But as k gets larger, so do the values of x^2 mod N, so they become less and less likely to be smooth. |
![]() |
![]() |
![]() |
#5 |
Bamboozled!
"πΊππ·π·π"
May 2003
Down not across
22×3×887 Posts |
![]()
Is this not just Dixon's algorithm?
Quadratic sieve is one of several optimizations to find small residues relatively quickly. |
![]() |
![]() |
![]() |
#6 |
"Roman V. Makarchuk"
Aug 2020
Ukraine
23×5 Posts |
![]()
) No. Thats not modification of something, that alredy known.
Here, almost not exist dependence on the size of p 2^8192+1 x, (x^2 mod p)/Sqrt(p) Code:
5720353491575715365573207647060110130930311845941594489709162339669173\ 3126677002055391174158840058106144909186570744855851093731306217508995\ 9904893948756275321967474142053334772728638507288543280281286290756461\ 5837609477906353263812704698792858816149688772025752422991311907352876\ 3308371380947492638856570549154410494535273090517737372504750670651385\ 1402045808003165989729105311696878561696904595476798191526269221901297\ 2415199363664663542904520069011535324223012917082110304849056309392164\ 3112296309372232260926345770271256291117734247883955572564143748950201\ 2184443345201434502884665779349015969722245352945784071585263882023867\ 4701702966890829829675500055788514197297514679915703971620448840307557\ 3044360782389514086046002012478147094087424792073565714375772067001558\ 9433577219670428998448397398960749460674073247323215216367712893144571\ 0358060949647927283528173599525786312849998317267529730989937814140040\ 3644194938140926143797422658447268306638854123378709962459979951948091\ 0907930266415417199103959789921686018969493005859797753629923068710385\ 8094392178848444117376048506865352746573209529159661508854229736867428\ 5538648706817872530124690134814789263156546700612819905564080225133758\ 79498470008940968142224307210692421637483474, 0.196535 Last fiddled with by RMLabrador on 2021-02-17 at 15:15 |
![]() |
![]() |
![]() |
#7 | ||
Apr 2020
2·5·23 Posts |
![]() Quote:
Quote:
|
||
![]() |
![]() |
![]() |
#8 | |
"Roman V. Makarchuk"
Aug 2020
Ukraine
23×5 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#9 | |
Apr 2020
2·5·23 Posts |
![]() Quote:
Code:
x = 803712330813026779984467996238884416214971565156928364938627476528725619263969815396609420647192767387047088537280168342583133370289681466664036601515256664532162868492066319219259007761040628727765538023351930944192148126167775008808304629533263425355385253143896320528105897093057289903813911261509744364221596754349092599941773536171331556106296046599280481554646712992461892614349798233477965259877475138994405369825177696679729437587826887692542458552640942273034046406623315798263145680891043686637391445032540395910325375468851229335375596465691932642620033840048042340560874167717227536778565093687084864153161837295278248064251713015349610408163810844931599580893498289130468322100545342214765576626305162155916461392536927172939542370552699794841546639696942494594881295110745600057366133524417482823881185678378432601423479050253273048637028860317987716898476943479237944963468932359660280494291852550606787892845073491675204759474666914399743527694155136496340145306286054418911968297458076935976668197695596679564065649545218457256747009337097533753616066105580844244678581870354460484805422460891163318275126567016218201111245008239842784312223897326256240493829297074010128721808496403649817028179402655922067452553735272112935118098361819146571967747051042335555925523097129065280695181367968739521347020479123535829218438990155045578042788217027786532541928880255659048461964830031081904398973070429000057734538932753168313024384238767541247394456519521058254015485928934810784366724254324179715676652889973536367069586419264634867275009262773583800103905515266430450939923456449494611090021711359342468052239822729109374194303746299345611328064149077421843876123990868643886890836434434739760257148038097816243546053087649691162971380180235559659909995406227405187678476435360101478277900910234390714923447334131495658146877984060452350213335133741350913893372372382750661473520560745144219025403767567466795828619770559384086516426383867438230420766577174816679626762160826485843734576247890525078588673773345671323828967305229371643946636126423808174801397883494238901936327801483179139525127964756982777998986620463231000851111119178933344251128592435756253320495730367630320796405088860883924469265007923549271763392823093339083508933874249313935417311348420618482970064864798810442199766735648403349360198497005505625756767517663136001810083403724859580183756649673884657258679172071876388173521731691492002229655726374237582150646660585229025 Code:
(x^2 mod p)/sqrt(p) = -0.00001411401799303015 |
|
![]() |
![]() |
![]() |
#10 |
Undefined
"The unspeakable one"
Jun 2006
My evil lair
17E416 Posts |
![]()
To the OP.
Please just show us the process used to factor an RSA number. As a starter I'll let you choose the number. But clearly show each step to arrive at p & q from n, without using knowledge of p & q as part of the process of course. |
![]() |
![]() |
![]() |
#11 | |
"Roman V. Makarchuk"
Aug 2020
Ukraine
1010002 Posts |
![]() Quote:
\p10000 { p=2^8192+1; Srp=sqrt(p); for(m=1,1000, x=m*2^4096; B=lift(Mod(x^2,p)); localprec(5); print(B/Srp/1.); ); } (x^2 mod p)/Sqrt(p)~10^1233 I do something wrong here??? And, if number is small, the probability of beeing *smooth* much higher, isntly? If we can find x^2 mod p~10^6 for RSA-260,270 and so on, do You think, this is do not help us to find the factors? To Mr. charybdis. The Signum x^2 mod p/Sqrt(p) must be + (Positive)))))) Last fiddled with by RMLabrador on 2021-02-17 at 18:22 |
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Riesel Primes k*2^n-1, k<300 [Part II] | Kosmaj | Riesel Prime Search | 1024 | 2021-04-11 17:38 |
I'm sure this is an ID-10-T error on my part | petrw1 | PrimeNet | 1 | 2017-09-25 23:12 |
Numbers in Tables : Part 2 | wustvn | Puzzles | 9 | 2007-12-31 05:14 |
Two PC's looking for part-time work | OmbooHankvald | Software | 8 | 2005-07-23 01:23 |
Circles part 2 | mfgoode | Puzzles | 10 | 2004-12-27 15:17 |