![]() |
![]() |
#1 |
Dec 2012
China
11 Posts |
![]()
we know that if $q=4k+3$ ($q$ is a prime), then $(a+bI)^q=a^q+b^q(I)^{4k+3}(mod q) =a -bI$ for every gaussian integer $(a+bi)$ ,Now consider a composite $N=4k+3$ satisfies this condistion for $a+bi=3+2i$, I use Mathematica8 and find no solutison$ less than $5\cdot 10^7, can someone find a lager number for the condition . I guess it's impossible for a composite N.So this can be use for Primality test .
__________ We know that if Now consider a composite I use Mathematica8 and find no solution less than I guess it's impossible for a composite N. So this can be use for Primality test. Last fiddled with by Batalov on 2012-12-06 at 02:30 Reason: (original message kept, tex'ed version added) |
![]() |
![]() |
![]() |
#2 |
"Nancy"
Aug 2002
Alexandria
9A316 Posts |
![]()
I haven't found counterexamples up to 10^7, except powers of 3 with odd exponent.
However, I suspect that this might be a kind of combined p-1 and p+1 test in disguise, and for those there are pairs of parameters known for which there is no known counterexample, but no proof of deterministicness (is that a word?), either. See for example http://mathworld.wolfram.com/Baillie...alityTest.html Last fiddled with by akruppa on 2013-01-18 at 10:36 Reason: now->no |
![]() |
![]() |
![]() |
#3 |
Sep 2002
Database er0rr
2×72×37 Posts |
![]()
Earlier this year, I tested 2+i for n==3 (mod 4) up to 10^13 without finding a counterexample
![]() Last fiddled with by paulunderwood on 2012-12-05 at 15:37 |
![]() |
![]() |
![]() |
#4 |
"Robert Gerbicz"
Oct 2005
Hungary
22×5×73 Posts |
![]()
This would be an AKS type test: n=4k+3 is prime iff (2*x+3)^n==3-2*x mod (x^2+1,n)
To see this notice that the minimal polynom of I is x^2+1 (and not x^4-1). This subject is an old topic not to use that many polynom tests for AKS, only a few. Here it would mean only one polynom. |
![]() |
![]() |
![]() |
#5 |
∂2ω=0
Sep 2002
República de California
2·5,813 Posts |
![]()
My guess would be that the appropriate "suffixing to imply the property of being ___" here is analogous to the one for e.g. "domestic". I love words that, even when spelled correctly, just sound plain wrong: coolth ... gruntled ... "deterministicity" seems a fine addition to this distinguished pantheon.
------------------------------ Edit: Of course using the alternative analogy with e.g. optimistic/pessimistic one arrives at the accepted suffixing here, "determinism" - but where's the fun in that? Last fiddled with by ewmayer on 2012-12-05 at 22:09 |
![]() |
![]() |
![]() |
#6 |
Romulan Interpreter
Jun 2011
Thailand
5×1,877 Posts |
![]()
[offtopic]
related to that I really have a problem with "primality" because is always underlined red by the spellchecker and that "piss me off" for such a simple word. I tried different forms, even using "r" or "double l" in all variations, but all ended up in being underlined, and I concluded that either there is no word like that, either I am dumb, or the speller is not so clever, therefore I continued to use "primality". So, what is the correct form? [/offtopic] Last fiddled with by LaurV on 2012-12-06 at 04:00 Reason: [ot] tags |
![]() |
![]() |
![]() |
#7 | |
∂2ω=0
Sep 2002
República de California
101101011010102 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#8 | |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
24B616 Posts |
![]() Quote:
Have you tried: right-click on the word primality, and "add to dictionary"? Same with heteroscedacity, pseudomarkers, telomeric ...and an endless score of biological and statistical terms. Add them once and never be bothered again. Maybe. Last fiddled with by Batalov on 2012-12-06 at 04:39 Reason: (I need a spellchecker, too) |
|
![]() |
![]() |
![]() |
#9 |
Romulan Interpreter
Jun 2011
Thailand
5·1,877 Posts |
![]()
Did that for colleagues' names (never remember Thai names!) and other common words which I know they are not English, and even some technical words (same as your biology stuff, but for me is microcontroller, photodiode, etc) which I don't give a darn if they are English or not, as long as I need to use them and everybody understand them. Including my family name, which the auto-substitute was always replacing it with a bad English word, hehe. Those are all complex** words! But primality? grrr.
** That to stay on topic with complex numbers ![]() Now to really stay on topic, for every odd prime is easy to show that according with its modularity to 4, the expression (3+2i)^n is either 3+2i, either 3-2i. Putting this in a pari line: Code:
gp > n=3; a=3+2*I; while((n+=2)<10^6, if(n%4==3, c=3-2*I; b=real(d=a^n)%n-(n-imag(d))%n*I, c=3+2*I; b=real(d=a^n)%n+imag(d)%n*I); if(b==c&&!isprime(n), print(n))) 1105 2465 10585 29341 41041 46657 115921 etc Now, all that appear in the list are 1 (mod 4), but there is no reason why 3 (mod 4) numbers won't appear if we go higher. We also can change the complex base, to get some other numbers which "pass". We can see this works right, by removing the "&&!isprime()" call then it prints all primes. For example, with 2+i, there are the same as above, plus few additional: 15841 is one of them. Last fiddled with by LaurV on 2012-12-06 at 07:41 |
![]() |
![]() |
![]() |
#10 |
Romulan Interpreter
Jun 2011
Thailand
5·1,877 Posts |
![]()
It turned out there is no big deal to implement this. No idea if pari has one already. I made it recursive, if power is even, call the function with power>>1, square, if power is odd multiply, take mod at the end. I put that in a "cIsPrime(b,n)" function, which will return 1 if n is probable prime base b, with b being a complex number.
The nicer part is that now, a complex number can be one with the imaginary part being zero ![]() Code:
gp> forstep(n=3,10^6,2, if(cIsPrime(2,n)&&!isprime(n),print(n))) 341 561 645 1105 1387 1729 1905 2047 2465 2701 2821 3277 4033 4369 4371 *** <break, snip, this is very fast anyhow> *** gp > forstep(n=3,10^6,2, if(cIsPrime(3+2*I,n)&&!isprime(n),print(n))) 1105 2465 10585 29341 41041 46657 *** <break, snip, this is very fast anyhow> *** // <This is a beautiful one!> : gp > forstep(n=3,10^6,2, if(cIsPrime(1+I,n)&&!isprime(n),print(n))) 561 1105 1729 1905 2047 2465 3277 4033 4681 6601 8321 8481 10585 12801 15841 16705 <etc> Last fiddled with by LaurV on 2012-12-06 at 08:01 Reason: cut the lists, too long code section, bolded, red color |
![]() |
![]() |
![]() |
#11 |
Dec 2012
China
10112 Posts |
![]()
is algorithm complexity
instead of Last fiddled with by wsc812 on 2012-12-06 at 09:07 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
A Theoretical (vs. Proficient/Practical) Deterministic Primality Test | a1call | Miscellaneous Math | 194 | 2018-03-19 05:54 |
Primality testing non-Mersennes | lukerichards | Software | 8 | 2018-01-24 22:30 |
Testing an expression for primality | 1260 | Software | 17 | 2015-08-28 01:35 |
Testing Mersenne cofactors for primality? | CRGreathouse | Computer Science & Computational Number Theory | 18 | 2013-06-08 19:12 |
a new primality testing method | jasong | Math | 1 | 2007-11-06 21:46 |