![]() |
![]() |
#386 |
Tribal Bullet
Oct 2004
2×3×19×31 Posts |
![]()
Maybe flip rlim and alim? The rational norms will probably be larger for this input...
|
![]() |
![]() |
![]() |
#387 |
Jun 2003
3·5·17·19 Posts |
![]()
Considering that too large an FB is more benign than too small, I'd suggest to bump both of them to 2^24-1. And probably start sieving from lower special-q (say 3 mil?). Siever 13e or 14e -- at this size, it's probably a wash.
Last fiddled with by axn on 2010-10-05 at 17:46 |
![]() |
![]() |
![]() |
#388 |
Sep 2009
2·3·331 Posts |
![]()
The alim of 8000000 was because factMsieve.pl lowers alim to the start of the range it is sieving from.
I've restarted with alim and rlim just under 2^24 from q0: 3e6 and I'm getting a better yield even though alim gets lowered to 3e6. Hopefully the yield will rise further as alim rises. The numbers with exponent 16 seem the hardest to handle. I'm almost wondering what an inverted octic would yield (at a guess even worse though). But I don't plan to try it, I'm more limited by human time than CPU time. Thanks for the advice though! Chris K |
![]() |
![]() |
![]() |
#389 |
Sep 2009
2·3·331 Posts |
![]()
A result from my other system doing SNFS:
sigma(15428908531^16) r1=14626378603026637440876935345110752326808617649740543443295899 (pp62) r2=348735520870862164578134010988731594775521012539225570516087953133011785002062963 (pp81) And two more ECM results: Code:
sigma(141785047417170330875956138182105901767368657881^10) ********** Factor found in step 1: 8349872936935826450829882263387 Found probable prime factor of 31 digits: 8349872936935826450829882263387 Composite cofactor 40866985545846521048453193355520513526503240765554925877353723400485544483604953923826252458151948382470863922759727058989786327240642768290326542226332321865881692141018216421787423442300724000665825199595659330779350921450136560086140658305570640678959955814433678115192087305648210585291332471320245185635679498732804767101607334727832647486861621247079329135407136244608771259695022713694923620212185008598968345925618935356337653 has 434 digits sigma(1631164874282493956886307^22) ********** Factor found in step 2: 169857056796434447746180363 Found probable prime factor of 27 digits: 169857056796434447746180363 Composite cofactor 1320467393510333024063211346076966466841344987176326750859641480884859799715831190718922798242061399416850605702085108236324986714042557397410124477729323138456022508589978108810244870449688608291500588432566165553552080036035942805450939317070299207327690658843986018600930517027023290324882482769797573657266419012869498740082495472091303138026148957934947790768632964871414242387818077191548080621282553735011441988430478473037832933580692517198691579992539673491431 has 469 digits |
![]() |
![]() |
![]() |
#390 | |
Feb 2003
2·3·29 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#391 |
Sep 2009
2×3×331 Posts |
![]()
One more result:
sigma(18041^42): r1=846126399222253639420487670576156969521047338120896029474041329110013 (pp69) r2=135426587507029610408100819035371891457760142878407814770672813795782498399 (pp75) No more ECM results, I've finished 1 curve at 3E6 against everything in t1200.txt. How much p-1, p+1 and ECM have been run against them, I'm wondering if p-1 or p+1 would be more cost effective than ECM? Chris K |
![]() |
![]() |
![]() |
#392 |
"William"
May 2003
New Haven
23×5×59 Posts |
![]()
ECM towards p50 by yoyo@home found this p49, saving the NFS factorization
Code:
sigma(3221,58) = P49 * P104 P49: 4187411465746443851965730786432472142030602773179 P104: 11578859994289585962788903706727722276478611473383633819079738873056500991287941273954277589513036337893 |
![]() |
![]() |
![]() |
#393 |
Sep 2009
198610 Posts |
![]()
Another result:
sigma(217081^30): r1=132883127965541779603133141099647960961486176894560469 (pp54) r2=5317613337469178892564229124327778444553412665772353373089326643138525852814621227771 (pp85) I would have posted it earlier, but mersenneforum.org locked up on me. Chris K |
![]() |
![]() |
![]() |
#394 |
Sep 2009
2·3·331 Posts |
![]()
And another:
sigma(926659^28) r1=7892247161280771044859798190887909435039422985794643101 (pp55) r2=36096359295529807517688919847790933188120139266525047350948270612809255451089225056386069689 (pp92) Chris K |
![]() |
![]() |
![]() |
#395 |
Sep 2009
2×3×331 Posts |
![]()
One more:
sigma(30941^40): r1=71241324717871904734237072306645377856814262516307521318979646514277 (pp68) r2=446507703883500494604423145413264927598208355225624679133946196988827605251701927 (pp81) Chris K |
![]() |
![]() |
![]() |
#396 |
"William"
May 2003
New Haven
23·5·59 Posts |
![]()
From Pascal's t600.txt, sigma(571^72) = P50 * P57 * P90
ECM to t50 by yoyo@home SNFS sieving by RSALS Post Processing by Lionel Debroux Code:
sigma(571^72) = P50 * P57 * P90 P50: 26386891018759314236196466940037349919451259404889 P57: 591872886509135249796335715865365136847433393908176875571 P90: 657774081749910492615766542057725047742640115655851832517033424113696223608856837236143399 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Odd perfect related road blocks | jchein1 | Factoring | 31 | 2009-04-29 15:18 |
Odd perfect related number | Zeta-Flux | Factoring | 46 | 2009-04-24 22:03 |
Question about triming [code] blocks | schickel | Forum Feedback | 4 | 2009-04-01 03:27 |
MonoDevelop vs. Code::Blocks | ixfd64 | Software | 1 | 2008-03-10 08:30 |
Intels Intresting Road | moo | Hardware | 7 | 2005-12-13 02:20 |