![]() |
![]() |
#100 | |
"Robert Gerbicz"
Oct 2005
Hungary
110001001012 Posts |
![]() Quote:
Code:
gerbicz@gerbicz-MS-7972:~/cmexp3/cm-0.4.1dev/src$ mpirun ecpp-mpi -v -g -n '10^3999+4771' -c -f cert-4000 MPI with 3 workers initialised, of which 3 are local. GMP: include 6.1.2, lib 6.1.2 MPFR: include 4.1.0, lib 4.1.0 MPC: include 1.2.1, lib 1.2.1 MPFRCX: include 0.6.3, lib 0.6.3 PARI: include 2.11.1, lib 2.11.1 Could not open file 'cert-4000.cert1' for reading. Writing to 'cert-4000.cert1'. -- Time for class numbers up to Dmax=44122804: 31.5 (10.5) *** Warning: *** Warning: increasing stack size to 16777216. *** Warning: increasing stack size to 16777216. increasing stack size to 16777216. *** Warning: increasing stack size to 33554432. *** Warning: increasing stack size to 33554432. *** Warning: increasing stack size to 33554432. *** Warning: increasing stack size to 67108864. *** Warning: increasing stack size to 67108864. *** Warning: increasing stack size to 67108864. -- Time for primorial of B=285893500: 11.9 (4.0) -- hmaxprime: 29 -- Size [0]: 13285 bits Time for discriminant -35378335: 156.0 ( 56.3) largest prime of d: 523 largest prime of h: 5 discriminants: 6.4 (6.4) 156 qroot: 45.5 (15.2) 42229 Cornacchia: 37.8 (12.7) 826 trial div: 7.9 (2.0) 198 is_prime: 58.4 (19.9) -- Size [1]: 13245 bits Time for discriminant -36487: 69.9 ( 23.4) largest prime of d: 107 largest prime of h: 19 discriminants: 6.5 (6.5) 189 qroot: 55.2 (18.8) 58122 Cornacchia: 52.5 (17.7) 1550 trial div: 15.5 (3.9) 327 is_prime: 96.2 (32.9) -- Size [2]: 13198 bits |
|
![]() |
![]() |
![]() |
#101 | |
Sep 2002
Database er0rr
2·5·421 Posts |
![]() Quote:
I just measured a ~25k digits (85349 bits) from "Size [0]" to "Size [2]" with a decrease in time from 39:49 minutes to 24:56 minutes -- about 60% speed up. There is an error in the gw_prp.c attachment for the Lucas sequence: It should be LEN = bitlen(n) - 1; The fact that "-1" is missing is of no consequence because 2^2-2 == 2 and 2*a-a == a. Fix at will. Last fiddled with by paulunderwood on 2022-05-19 at 15:49 Reason: Adjusted timing because I can no longer subtract in my head |
|
![]() |
![]() |
![]() |
#102 |
Dec 2008
you know...around...
76210 Posts |
![]()
So when will R86453 be verified?
![]() |
![]() |
![]() |
![]() |
#103 |
Sep 2002
Database er0rr
2×5×421 Posts |
![]()
I'd say 4-5 months on 1024 cores with my above hack.
You'd need to increase the char array size! Last fiddled with by paulunderwood on 2022-05-19 at 19:39 |
![]() |
![]() |
![]() |
#104 |
Bamboozled!
"๐บ๐๐ท๐ท๐ญ"
May 2003
Down not across
19×599 Posts |
![]() |
![]() |
![]() |
![]() |
#105 |
Sep 2002
Database er0rr
2×5×421 Posts |
![]()
I have made a number of changes gw_prp.c (attached):
Code:
int cm_nt_is_prime (mpz_t a) { char str[100000]; if ( mpz_sizeinbase (a, 2) < 26000 ) { return (mpz_probab_prime_p(a, 0)>0); } strcpy(str, "/home/paul/Downloads/p95/gw_prp "); // note space in the string strcat(str, mpz_get_str(NULL, 16, a)); return (system(str)); } Last fiddled with by paulunderwood on 2022-05-20 at 15:45 Reason: mistake in mpz_sizeinbase function fixed |
![]() |
![]() |
![]() |
#106 |
"Robert Gerbicz"
Oct 2005
Hungary
112·13 Posts |
![]()
Btw what the current code is doing is already an overshoot, though not that much, in nt.c:
Code:
int cm_nt_is_prime (mpz_t a) { return (mpz_probab_prime_p (a, 0) > 0); } return (mpz_millerrabin (a, 0) > 0); In fact from (guessing) version 6.2.1 it will do also a strong Lucas test (if one Rabin is successful), but that is not a big deal. And for earlier versions it is doing one Fermat test with base=210 and not a Rabin test when you call with reps=0, quite misleading function names. |
![]() |
![]() |
![]() |
#107 |
Jul 2003
So Cal
2·11·109 Posts |
![]()
I just had a run get stuck on a step working on
Code:
4531639080398409751543102363189210388561295739200059409910002128575879252044372470939639130654350326809619032283785951586667387162556159204470579280744080394770890890761473771702543341439843057839826042990380807774508826009131637007652600491990466142433996980974323868098960737037896754715628102593258096889250744996238063221331826027855816847178793210167104445792399367511466532548311414602294560863760971492747974889601679134607098927856534139146483993036519910583866176699606432451853619574790556323312696202240176503206191578852139722404586854472882888806638928537427019319392169942640664860879956345641246729029562532138359067067475376974748018453703989853202504033842036148898616226552340101465681768544445443239531999858918142314754785070542302912380125531156244188333022442991985226521312767374521617458074355151671993903061624116932585399962540714874574427249951911749844492128142426856039845656578936590910507574356941257061866243438004403224888089528464418018356968445936885349836556144352941138571557156324653576756759422854642549990921625045611411271919609544526107817222502304182759843723618551214351334361897051055844779217713615178208700433054571358747242171870095969204375769532644236534449137323917909594775304087677280421269270904981804978139095907874260485520995787003847512902995782659304806205215250358093419792365927829525877406332945521158000436864735696528985392842020903845827862464508425162703530860344537477519478688213176843046504931396200997115318870119664195406545604690770058440451543480798165952453581393965419871079827182540821119978100930442937939098851735861688733759546152809562474492659982997835918085469449979745844614650825260719308601079350348591661624078523589217166568564723520158275861748192972807405294407239342204427663492997159383699981868436753212463669947230694063881294624361727650889541599556065453929874147030593058249859422933854014012989689059731156056132516786141299857987489998068338747575377033139788452182728091593342531289581087404905091256536271436694767902850686560754365166694481862297003779755695671517825294888679381856046471911594811517116940834394198732253389484558953311348035669007858071981527044025496257518346059994758249300423620370126102158291850570902667997164072469033717080464640521057468505871718602796530241878359840588094295036902643001150332638846035623515327510239448015239505638893227312180189519908719574544293020674390377186896185612716902783900385724821390236986294472894900219606413139005144076270134686777442692065202574239841582117145086032262723646362894456274005808079705450174019771232274256790851851928055471674912481731678407646202696430164341781721168551059826510824950886543610054951614489607826042271048678256091267216609542197979354533897922678974790701911386968321628378874664480148813300027496875465894376042149830526297638550279173707434374060706514139708013819115981417274798377935462892788375515423788137610472034389645002068655939022305251457330317989204902087414673982275016098797660538069467846965733793534316440143218731784537099006938039010330941843480620889715403351270932067112090309003467319663675973487168801128468956772332385072245292138739149085327102838758235182810520291872791107631482129107360072782551782009320471697569573146868781303451667205956545529273248647690936032085520351172132482441908819460157406515293509994056735198049768784067475087457330689012768215688672033334645124573127953038584457642240573326540295929534131438283944552354851512008966001872304220576881538430897471263845694474208622839851028910727982243299519680701392199375310502797108212790619915473429876842501892923937782930696325443849289793566624152128351656913804771950413050328748207400671298323366232597322594833501268797244089504678194835447966715520904099473450927985951541405274046330384881882942680423296825500780429280513298290289328393718535790474088819620335604900638205940950514707899690344101238397757519010170474031049596685181701583491234192451590769044059269692357481812950614099502106475976871555261406856631931798318348563068026520032044703511020971870644407882731896991998768082110652773444838042980972830044670501801932827974811647190758425568321439165256513590980329123726221834268222485834384676842468801433788068357874972965485208139094176790922685588073735578405944865244704702835253175110012024866260642584709534947340408721479595217206018897796096373336196269610109926524640754067974081425773219058823520766365129688041121422428838144461554110799206502075709220893746977161345162423979031596047844983606065917330547035850608646821930592142602584583291962323570191395828428889808884623013369708706374390697450456701310207916193810869457977774714425944042805235497512887409268475349046348919048941231857006847019336572139393777007405843043934859561516060492795490227228740920985651439970678002757811431703015394416895375850058189878847117279383027719464381920060208880043329742210713598592869392221454356408239858719515716327704023997649117857864127989952523091287603240721927667894817582634925748917141632924541848276476003182514953969083868112521841026591117257338818474067334324039814008911332088247085781153958096853260024496479302998524507223621402584294098095405939259309614481054075854040821259441510883395447630591237798075891573305447770849880858132969008505400193167599849394766365496368883496780155125664524421810988503917713816389605347902040814982573546389428517874745033553259042771964871551706832642300030633320734664885973945236610519115081651909246495531905014422561669332198908167531915986865937022953434951773520450955999890787813055835031121207723214557964601103402791655137888379890916992364108869213138060695061068996740241893970818605203135178649161226611148329513094357771672636873358979307035207658700694326742633604130891968940619549462440082866229195370336246246473726583453459420328131541000801564893397229396129048943270333686520053607084589766503186672808737096819664053791575351962162034554148108513285370280436401078162304112269026712578887184946700032185049228586254227194244799127532029196539796340525614248117365287030452916839410024394675046473012214345826012068926755475162674992399689501903188621423319815287205825131009156947519894356027726711446297582948394073481515403245547729810516718216324522816273766059411264513993450313955511881841000081787202763894312078377606630608421944452430311778253907207353549044053261584286598642098513618760065980928554289442257467897186927443536744723414259155925105724416244692943695407148396808474558594129441864289503220725876871883346816360278839431959336987729840573499536714199954381179462768467251100471386587402276937939593598066884490146716757243242283707043357895706163585751028064582072885692551591732530531072488587734488059673836499937894471700638601648902823504954266878892309961725393319465931719776299859305937711807559081906510981076461180550816799512356235276137912623533166664012733566151326798924681706091017263196572885466438907128708507159746567963942381162692858282208112977626447398214294510359855573772112846291214724761201822625743224541244808106200734063310080394690191548213650168670849413215835976605590214184886192575353204592242491215166506204135104058991353224011364669315290185894789135883516939321468047245281139496074325166007697353949284170977198579274374331060505552569304201796233402340211878940021756329612345439978344907417904007037310519467332092804175269811710393869116430791265987373432957257060737347844528111182976191802085995201534261455185640247762597912240822517922053257774212087816934045453023603530511498370347688154981219586586409777596677690227874101863590482775459337133016676537473631901115855421580407635365941421514676286153652186953461220420082244407205925361649448371146651115484169202506321448244002911018642315667075526387675288823743594109510146606337792232736405694851288765526407880041290765271485948770374378531364121913727237405241051546994637690354136434916201170279508177402878967979825558794214128131592770650303638575440208004888955869715652669564210406270544948409574925895276367600192839111042446754353151438184546369285260362542607238050417863760753093159063401752768569697454132056223685112590668857709818380213693832482951595408716170844769008507482906898333084789787647331038485754021710472411849007451757200686548929284394336876898141060111388645761284080110136736280716710796806601508582136581089164946176950957816752679644382393487799003256209431862694716126958411988819544364006577695490353202169624849957688152882420385860176457637097990915618103004217229273615534585172180148831178752760086865641788690557103572322906154095711801952057393624134973086680083189513670170916982355498212353946157598192686295169141898764528320388769588530867677146695295364244704697127209395593315132361093486203018210747860428053039585775458346949554172385903922792000399791975606338324184041035043221618611561894022167788383011897499815526148331383818979695062537242994793246102183968119370913260124190568618728865710964279952333546609746096434625404825390998966277515156887792505727662353353356074353273467634693577419564967031870975478688303462803830945548349978752951053128884424930949527903144337172840010016701407174408603676606475867605486087359569450402750019393603249806481295118893343690673921885426241700554914665716642518709352253109231841868983806889360539821845058112602415558178215929772898392775133759511251399428575611045288588514793923559008897727714669661549466303835861063659925512729474536190295122132947656224965440002507148995413657930072526738476678427753025047663431970899155369645681505740714271529518794865467878882166388812273469302559180066629767710046022769351395307605888007802551526133662358624100817411514274207901714626910359073631413518231641683947274108410846844451139246206438143138448648767433225133931924453074526308062891837902871935962247917647093424338703577571194521434455071965175140903075835490044258342085428044386196439257092361707999290926218405679215732704020682288357381858863106649283867081587917024915621727848812712783424969941603924350676645495251747438846886129112690896091303091562065563576827221221644841598888693888161243146624013286245031816014476794229986900153963196468926141495095085260307217003523452267037461123708537716666487929853680110809670059222485191613520894517476785663148234847145717058248797221681760627133234855040167530038311965716462325916997170169590993647722582580142435153682264462095464116169482909727280134108961728996784928255849780105397766526061954455088994441605471691616465732184344985471547226520475957449473163680486699650428547793806026828451739451182123971174033138800340952961894876277554281630408853691531194706485454041246860641160551685191696071231946377881433633906417609805674365704843218277787661473814303062725702565581430074456972968698082400161418289935016311215868848445004967721578071943223245812360596161392358544275335338725907501165295968647655560891362258977366151364549241410357995771229847613457889425350672323620323970076453719520164395833622910432261438237619358327810942457659046290842871939459043008715083112207360179361612289550199293141897552864268497093535839284109358833406764847222341513401896085429264555196728123081415044627773511382142009571017971318230406565750163291014108162659037510539157889764419246905230436879750091332084382632286245235015901348747366971241583075910376678645571232600690528644727502948031219631626431778198976155225136980119277806633767660041394695031478153109172580431805793663909341228631119527399519334497471569798236322458319759321526733191261397178675493343221787736608531114274193384672825942213234252132497736581797078783919712511721124844495205744158298024872895221091955838075035261550557832432688756595709577919297797685558780558442442625992138797881994750454282139846278114304942556380285254958676426835928892750345910729942390077572591651503212427407011736972084986580282291259081369716000378685961723280831422724926996221780413640284821905969267863827671677031282004655023489117478159996645383224454049398218096599840748703424553596229384216608556124839175007389463983561688488671991209325894381566312780198269452302734205794677616140842635308072540903665417773445911173881420995259036082038329444411236109326955889789646921072587662473062797758295441464235831371167496658170256711301908116951760749283741116943671410780759632135012744172903494987543272092424615523276727444301913525230282377170088028883677782998961662986234305575904758091757063951641437078603186536124979044248426163402858039629140859654013275591548674271436725204303450614019121585450048760229779985296406000579164665361673758135984669759816548901508619367352776523398928165777874786120779605873312061634844179846135738800248588491467605904622028854885666346108444855045801960863580886242640837722545065157824897709939625792227438561729270848192693831162566711545882557296147532534726542649011428602050036000076814616183991234626860196016442116906586592211968207526767766484117733236154868941810846632036408328449303842326532244068439599373524080840563182586185152539754430675271626774088070624226167281737883510514458826063645451960666504530212969125576217266234912565310460734681263582622404401177067909932903457166967462593906503105041946271051783492471858584222052023578809784819938903250202836890147321219095262756352985407188891512092022283782208477 Code:
***** Error: cm_nt_next_prime called with an argument that is too large for the precomputed list. |
![]() |
![]() |
![]() |
#108 | |
Sep 2002
Database er0rr
2×5×421 Posts |
![]() Quote:
Code:
#ifdef WITH_MPI // static unsigned long int P [664579]; // /* primes up to 10^7 */ static unsigned long int P [5761455]; /* primes up to 10^8 */ #else static unsigned long int P [9592]; /* primes up to 10^5 */ #endif ![]() Last fiddled with by paulunderwood on 2022-05-21 at 06:16 |
|
![]() |
![]() |
![]() |
#109 | |
Dec 2008
you know...around...
76210 Posts |
![]()
Awesome!
Quote:
I'm pondering testing a couple of numbers once the program is easy enough for me to use. I'm really lost when it comes to compiling like the way it's being discussed here. |
|
![]() |
![]() |
![]() |
#110 |
Bamboozled!
"๐บ๐๐ท๐ท๐ญ"
May 2003
Down not across
1138110 Posts |
![]() |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
For which types of primes is GPU primality test software available? | bur | GPU Computing | 6 | 2020-08-28 06:20 |
Fastest software for Mersenne primality test? | JonathanM | Information & Answers | 25 | 2020-06-16 02:47 |
APR-CL as primality proof | f1pokerspeed | FactorDB | 14 | 2014-01-09 21:06 |
Proof of Primality Test for Fermat Numbers | princeps | Math | 15 | 2012-04-02 21:49 |
PRIMALITY PROOF for Wagstaff numbers! | AntonVrba | Math | 96 | 2009-02-25 10:37 |