![]() |
![]() |
#1 |
May 2022
18 Posts |
![]()
How can I prove that if p=3 (mod 4) is a Sophie Germain prime then the Mersenne number 2^p-1 is composite?
Thanks in advance. |
![]() |
![]() |
![]() |
#2 | |
"Καλός"
May 2018
14316 Posts |
![]() Quote:
Édouard Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American Journal of Mathematics, Vol. 1, No. 4 (1878), pp. 184-240 and 289-321 (in French). Available: <http://edouardlucas.free.fr/oeuvres/...eriodiques.pdf>. |
|
![]() |
![]() |
![]() |
#3 | |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
32×5×7×11 Posts |
![]() Quote:
Similarly, if p == 1 mod 4 is a Sophie Germain prime and p > 5, then the Wagstaff number (2^p+1)/3 is composite. Here is an exercise for you: prove that if p is a Sophie Germain prime other than 2, 3, and 5, then the dozenal repunit (12^p-1)/11 is composite. |
|
![]() |
![]() |
![]() |
#4 | |
"Καλός"
May 2018
17×19 Posts |
![]() Quote:
Joseph Louis de Lagrange, Recherches d'arithmétique (1775), pp. 695-795 (in French). Available: <https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696#>. See Lemme III in page 778 and also 49. Scolie I in page 794. |
|
![]() |
![]() |
![]() |
#5 |
"Καλός"
May 2018
5038 Posts |
![]()
See also the web page on "Euler and Lagrange on Mersenne Divisors" by Chris K. Caldwell at <https://primes.utm.edu/notes/proofs/MerDiv2.html>.
Last fiddled with by Dobri on 2022-05-30 at 23:03 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Sophie Germain Primes, Mersenne numbers and Wagstaff numbers Connection | JCoveiro | Number Theory Discussion Group | 2 | 2022-02-08 14:43 |
Mersenne prime exponents that are also Sophie Germain primes | carpetpool | Miscellaneous Math | 4 | 2021-11-12 00:10 |
Sophie Germain Twins | Trejack | Twin Prime Search | 10 | 2016-06-23 15:10 |
Sophie-Germain primes as Mersenne exponents | ProximaCentauri | Miscellaneous Math | 15 | 2014-12-25 14:26 |
Sophie-Germain sieve | firejuggler | Software | 4 | 2014-01-10 00:09 |