mersenneforum.org find very easy twin prime in the infamy twin primes
 Register FAQ Search Today's Posts Mark Forums Read

 2018-08-29, 18:26 #1 hal1se   Jul 2018 23·5 Posts find very easy twin prime in the infamy twin primes every prime templates probably twin prime, all template elements very regularly! 3# template probably twin or cousin prime=1 5# template probably twin or cousin prime=3 7# template probably twin or cousin prime=15=3*5 11# tepmlate probably twin or cousin prime=135=3^3*5 13# template probably twin or cousin prime=1485=3^3*5*11 17# template probably twin or cousin prime=22275=3^4*5^2*11 19# template probably twin or cousin prime=378675=3^4*5^2*11*17 23# template probably twin or cousin prime=7952175=3^5*5^2*7*11*17 some one see, any regularly? you must: look hyper geometric and complex variables domain! ________________ if we think, only prime template last probably element: ________________ 3# to 5# twimprime count, only (6n+5, 6n+6+1) format = 2 (11, 13) (17, 19) 3#=2*3 to 5#=2*3*5 range 2*3*5 - 2*3 = 2*3*(5-1)=3#*(5-1) 3#*(5-1)/6=(5-1) =4 (3#*n+3#-1, 3#*n+3#+1) format numbers 5# to 7# twinprime count, only (30n+29, 30n+30+1) format = 3 (59, 61) (149, 151) (179, 181) 5#=2*3*5 to 7#=2*3*5*7 range 2*3*5*7 - 2*3*5 = 2*3*5*(7-1)=5#*(7-1) 5#*(7-1)/5#=(7-1) =6 times :(5#*n+5#-1, 5#*n+5#+1) format numbers 3# to 5# 1*isprime(3#*1+(3#-1))*isprime(3#*1+(3#+1)) 2*isprime(3#*2+(3#-1))*isprime(3#*2+(3#+1)) 3*isprime(3#*3+(3#-1))*isprime(3#*3+(3#+1)) 4*isprime(3#*4+(3#-1))*isprime(3#*4+(3#+1)) 4: probably template last twin elements n=1,2,4 : 3 twinprimes __ 5# to 7# 1*isprime(5#*1+(5#-1))*isprime(5#*1+(5#+1)) 2*isprime(5#*2+(5#-1))*isprime(5#*2+(5#+1)) 3*isprime(5#*3+(5#-1))*isprime(5#*3+(5#+1)) 4*isprime(5#*4+(5#-1))*isprime(5#*4+(5#+1)) 5*isprime(5#*5+(5#-1))*isprime(5#*5+(5#+1)) 6*isprime(5#*6+(5#-1))*isprime(5#*6+(5#+1)) n=1,4,5 : 3 twinprimes __ 7# to 11# 1*isprime(7#*1+(7#-1))*isprime(7#*1+(7#+1)) 2*isprime(7#*2+(7#-1))*isprime(7#*2+(7#+1)) 3*isprime(7#*3+(7#-1))*isprime(7#*3+(7#+1)) 4*isprime(7#*4+(7#-1))*isprime(7#*4+(7#+1)) 5*isprime(7#*5+(7#-1))*isprime(7#*5+(7#+1)) 6*isprime(7#*6+(7#-1))*isprime(7#*6+(7#+1)) 7*isprime(7#*7+(7#-1))*isprime(7#*7+(7#+1)) 8*isprime(7#*8+(7#-1))*isprime(7#*8+(7#+1)) 9*isprime(7#*9+(7#-1))*isprime(7#*9+(7#+1)) 10*isprime(7#*10+(7#-1))*isprime(7#*10+(7#+1)) n=1,4,10 : 3 twinprimes __ 11# to 13# 1*isprime(11#*1+(11#-1))*isprime(11#*1+(11#+1)) 2*isprime(11#*2+(11#-1))*isprime(11#*2+(11#+1)) 3*isprime(11#*3+(11#-1))*isprime(11#*3+(11#+1)) 4*isprime(11#*4+(11#-1))*isprime(11#*4+(11#+1)) 5*isprime(11#*5+(11#-1))*isprime(11#*5+(11#+1)) 6*isprime(11#*6+(11#-1))*isprime(11#*6+(11#+1)) 7*isprime(11#*7+(11#-1))*isprime(11#*7+(11#+1)) 8*isprime(11#*8+(11#-1))*isprime(11#*8+(11#+1)) 9*isprime(11#*9+(11#-1))*isprime(11#*9+(11#+1)) 10*isprime(11#*10+(11#-1))*isprime(11#*10+(11#+1)) 11*isprime(11#*11+(11#-1))*isprime(11#*11+(11#+1)) 12*isprime(11#*12+(11#-1))*isprime(11#*12+(11#+1)) n=3,4,10 : 3 twinprimes __ 13# to 17# 1*isprime(13#*1+(13#-1))*isprime(13#*1+(13#+1)) 2*isprime(13#*2+(13#-1))*isprime(13#*2+(13#+1)) 3*isprime(13#*3+(13#-1))*isprime(13#*3+(13#+1)) 4*isprime(13#*4+(13#-1))*isprime(13#*4+(13#+1)) 5*isprime(13#*5+(13#-1))*isprime(13#*5+(13#+1)) 6*isprime(13#*6+(13#-1))*isprime(13#*6+(13#+1)) 7*isprime(13#*7+(13#-1))*isprime(13#*7+(13#+1)) 8*isprime(13#*8+(13#-1))*isprime(13#*8+(13#+1)) 9*isprime(13#*9+(13#-1))*isprime(13#*9+(13#+1)) 10*isprime(13#*10+(13#-1))*isprime(13#*10+(13#+1)) 11*isprime(13#*11+(13#-1))*isprime(13#*11+(13#+1)) 12*isprime(13#*12+(13#-1))*isprime(13#*12+(13#+1)) 13*isprime(13#*13+(13#-1))*isprime(13#*13+(13#+1)) 14*isprime(13#*14+(13#-1))*isprime(13#*14+(13#+1)) 15*isprime(13#*15+(13#-1))*isprime(13#*15+(13#+1)) 16*isprime(13#*16+(13#-1))*isprime(13#*16+(13#+1)) n=5,8,9,10,12,13 : 6 twinprimes __ 17# to 19# 1*isprime(17#*1+(17#-1))*isprime(17#*1+(17#+1)) 2*isprime(17#*2+(17#-1))*isprime(17#*2+(17#+1)) 3*isprime(17#*3+(17#-1))*isprime(17#*3+(17#+1)) 4*isprime(17#*4+(17#-1))*isprime(17#*4+(17#+1)) 5*isprime(17#*5+(17#-1))*isprime(17#*5+(17#+1)) 6*isprime(17#*6+(17#-1))*isprime(17#*6+(17#+1)) 7*isprime(17#*7+(17#-1))*isprime(17#*7+(17#+1)) 8*isprime(17#*8+(17#-1))*isprime(17#*8+(17#+1)) 9*isprime(17#*9+(17#-1))*isprime(17#*9+(17#+1)) 10*isprime(17#*10+(17#-1))*isprime(17#*10+(17#+1)) 11*isprime(17#*11+(17#-1))*isprime(17#*11+(17#+1)) 12*isprime(17#*12+(17#-1))*isprime(17#*12+(17#+1)) 13*isprime(17#*13+(17#-1))*isprime(17#*13+(17#+1)) 14*isprime(17#*14+(17#-1))*isprime(17#*14+(17#+1)) 15*isprime(17#*15+(17#-1))*isprime(17#*15+(17#+1)) 16*isprime(17#*16+(17#-1))*isprime(17#*16+(17#+1)) 17*isprime(17#*17+(17#-1))*isprime(17#*17+(17#+1)) 18*isprime(17#*18+(17#-1))*isprime(17#*18+(17#+1)) n=7,16 : 2 twin primes __ 19# to 23# 1*isprime(19#*1+(19#-1))*isprime(19#*1+(19#+1)) 2*isprime(19#*2+(19#-1))*isprime(19#*2+(19#+1)) 3*isprime(19#*3+(19#-1))*isprime(19#*3+(19#+1)) 4*isprime(19#*4+(19#-1))*isprime(19#*4+(19#+1)) 5*isprime(19#*5+(19#-1))*isprime(19#*5+(19#+1)) 6*isprime(19#*6+(19#-1))*isprime(19#*6+(19#+1)) 7*isprime(19#*7+(19#-1))*isprime(19#*7+(19#+1)) 8*isprime(19#*8+(19#-1))*isprime(19#*8+(19#+1)) 9*isprime(19#*9+(19#-1))*isprime(19#*9+(19#+1)) 10*isprime(19#*10+(19#-1))*isprime(19#*10+(19#+1)) 11*isprime(19#*11+(19#-1))*isprime(19#*11+(19#+1)) 12*isprime(19#*12+(19#-1))*isprime(19#*12+(19#+1)) 13*isprime(19#*13+(19#-1))*isprime(19#*13+(19#+1)) 14*isprime(19#*14+(19#-1))*isprime(19#*14+(19#+1)) 15*isprime(19#*15+(19#-1))*isprime(19#*15+(19#+1)) 16*isprime(19#*16+(19#-1))*isprime(19#*16+(19#+1)) 17*isprime(19#*17+(19#-1))*isprime(19#*17+(19#+1)) 18*isprime(19#*18+(19#-1))*isprime(19#*18+(19#+1)) 19*isprime(19#*19+(19#-1))*isprime(19#*19+(19#+1)) 20*isprime(19#*20+(19#-1))*isprime(19#*20+(19#+1)) 21*isprime(19#*21+(19#-1))*isprime(19#*21+(19#+1)) 22*isprime(19#*22+(19#-1))*isprime(19#*22+(19#+1)) n=10 : only 1 twinprime __ 23# to 29# 1*isprime(23#*1+(23#-1))*isprime(23#*1+(23#+1)) 2*isprime(23#*2+(23#-1))*isprime(23#*2+(23#+1)) 3*isprime(23#*3+(23#-1))*isprime(23#*3+(23#+1)) 4*isprime(23#*4+(23#-1))*isprime(23#*4+(23#+1)) 5*isprime(23#*5+(23#-1))*isprime(23#*5+(23#+1)) 6*isprime(23#*6+(23#-1))*isprime(23#*6+(23#+1)) 7*isprime(23#*7+(23#-1))*isprime(23#*7+(23#+1)) 8*isprime(23#*8+(23#-1))*isprime(23#*8+(23#+1)) 9*isprime(23#*9+(23#-1))*isprime(23#*9+(23#+1)) 10*isprime(23#*10+(23#-1))*isprime(23#*10+(23#+1)) 11*isprime(23#*11+(23#-1))*isprime(23#*11+(23#+1)) 12*isprime(23#*12+(23#-1))*isprime(23#*12+(23#+1)) 13*isprime(23#*13+(23#-1))*isprime(23#*13+(23#+1)) 14*isprime(23#*14+(23#-1))*isprime(23#*14+(23#+1)) 15*isprime(23#*15+(23#-1))*isprime(23#*15+(23#+1)) 16*isprime(23#*16+(23#-1))*isprime(23#*16+(23#+1)) 17*isprime(23#*17+(23#-1))*isprime(23#*17+(23#+1)) 18*isprime(23#*18+(23#-1))*isprime(23#*18+(23#+1)) 19*isprime(23#*19+(23#-1))*isprime(23#*19+(23#+1)) 20*isprime(23#*20+(23#-1))*isprime(23#*20+(23#+1)) 21*isprime(23#*21+(23#-1))*isprime(23#*21+(23#+1)) 22*isprime(23#*22+(23#-1))*isprime(23#*22+(23#+1)) 23*isprime(23#*23+(23#-1))*isprime(23#*23+(23#+1)) 24*isprime(23#*24+(23#-1))*isprime(23#*24+(23#+1)) 25*isprime(23#*25+(23#-1))*isprime(23#*25+(23#+1)) 26*isprime(23#*26+(23#-1))*isprime(23#*26+(23#+1)) 27*isprime(23#*27+(23#-1))*isprime(23#*27+(23#+1)) 28*isprime(23#*28+(23#-1))*isprime(23#*28+(23#+1)) n=3,10,15,18,19,21,26: 7 twinprime __ 29# to 31# 15*isprime(29#*15+(29#-1))*isprime(29#*15+(29#+1)) only 1 twin prime ___ 31# to 37# 21*isprime(31#*21+(31#-1))*isprime(31#*21+(31#+1)) only 1 twin prime __ 37# to 41# 3*isprime(37#*3+(37#-1))*isprime(37#*3+(37#+1)) 22*isprime(37#*22+(37#-1))*isprime(37#*22+(37#+1)) middle point of range: 37#*(41+1)/2=155835500831010 ln(155835500831010)=32,679822084968449905680465344453 every (3/4)*(32,679822084968449905680465344453)^2= =800,978=~801 integers only 1 twin prime, average, this range. 40 probably template last element twinprime! but 2 twin prime! range twin prime last element count posibilities > normal distribition posibilites! __ 41# to 43# no twin prime! very normal and near normal distribition posibilites result! __ 43# to 47# 23*isprime(43#*23+(43#-1))*isprime(43#*23+(43#+1)) only 1 twin prime __ 47# to 53# 36*isprime(47#*36+(47#-1))*isprime(47#*36+(47#+1)) (22750921955774182169,22750921955774182171) only 1 twin prime. __ 53# to 59# 1*isprime(53#*1+(53#-1))*isprime(53#*1+(53#+1)) 2*isprime(53#*2+(53#-1))*isprime(53#*2+(53#+1)) 3*isprime(53#*3+(53#-1))*isprime(53#*3+(53#+1)) 4*isprime(53#*4+(53#-1))*isprime(53#*4+(53#+1)) 5*isprime(53#*5+(53#-1))*isprime(53#*5+(53#+1)) 6*isprime(53#*6+(53#-1))*isprime(53#*6+(53#+1)) 7*isprime(53#*7+(53#-1))*isprime(53#*7+(53#+1)) 8*isprime(53#*8+(53#-1))*isprime(53#*8+(53#+1)) 9*isprime(53#*9+(53#-1))*isprime(53#*9+(53#+1)) 10*isprime(53#*10+(53#-1))*isprime(53#*10+(53#+1)) 11*isprime(53#*11+(53#-1))*isprime(53#*11+(53#+1)) 12*isprime(53#*12+(53#-1))*isprime(53#*12+(53#+1)) 13*isprime(53#*13+(53#-1))*isprime(53#*13+(53#+1)) 14*isprime(53#*14+(53#-1))*isprime(53#*14+(53#+1)) 15*isprime(53#*15+(53#-1))*isprime(53#*15+(53#+1)) 16*isprime(53#*16+(53#-1))*isprime(53#*16+(53#+1)) 17*isprime(53#*17+(53#-1))*isprime(53#*17+(53#+1)) 18*isprime(53#*18+(53#-1))*isprime(53#*18+(53#+1)) 19*isprime(53#*19+(53#-1))*isprime(53#*19+(53#+1)) 20*isprime(53#*20+(53#-1))*isprime(53#*20+(53#+1)) 21*isprime(53#*21+(53#-1))*isprime(53#*21+(53#+1)) 22*isprime(53#*22+(53#-1))*isprime(53#*22+(53#+1)) 23*isprime(53#*23+(53#-1))*isprime(53#*23+(53#+1)) 24*isprime(53#*24+(53#-1))*isprime(53#*24+(53#+1)) 25*isprime(53#*25+(53#-1))*isprime(53#*25+(53#+1)) 26*isprime(53#*26+(53#-1))*isprime(53#*26+(53#+1)) 27*isprime(53#*27+(53#-1))*isprime(53#*27+(53#+1)) 28*isprime(53#*28+(53#-1))*isprime(53#*28+(53#+1)) 29*isprime(53#*29+(53#-1))*isprime(53#*29+(53#+1)) 30*isprime(53#*30+(53#-1))*isprime(53#*30+(53#+1)) 31*isprime(53#*31+(53#-1))*isprime(53#*31+(53#+1)) 32*isprime(53#*32+(53#-1))*isprime(53#*32+(53#+1)) 33*isprime(53#*33+(53#-1))*isprime(53#*33+(53#+1)) 34*isprime(53#*34+(53#-1))*isprime(53#*34+(53#+1)) 35*isprime(53#*35+(53#-1))*isprime(53#*35+(53#+1)) 36*isprime(53#*36+(53#-1))*isprime(53#*36+(53#+1)) 37*isprime(53#*37+(53#-1))*isprime(53#*37+(53#+1)) 38*isprime(53#*38+(53#-1))*isprime(53#*38+(53#+1)) 39*isprime(53#*39+(53#-1))*isprime(53#*39+(53#+1)) 40*isprime(53#*40+(53#-1))*isprime(53#*40+(53#+1)) 41*isprime(53#*41+(53#-1))*isprime(53#*41+(53#+1)) 42*isprime(53#*42+(53#-1))*isprime(53#*42+(53#+1)) 43*isprime(53#*43+(53#-1))*isprime(53#*43+(53#+1)) 44*isprime(53#*44+(53#-1))*isprime(53#*44+(53#+1)) 45*isprime(53#*45+(53#-1))*isprime(53#*45+(53#+1)) 46*isprime(53#*46+(53#-1))*isprime(53#*46+(53#+1)) 47*isprime(53#*47+(53#-1))*isprime(53#*47+(53#+1)) 48*isprime(53#*48+(53#-1))*isprime(53#*48+(53#+1)) 49*isprime(53#*49+(53#-1))*isprime(53#*49+(53#+1)) 50*isprime(53#*50+(53#-1))*isprime(53#*50+(53#+1)) 51*isprime(53#*51+(53#-1))*isprime(53#*51+(53#+1)) 52*isprime(53#*52+(53#-1))*isprime(53#*52+(53#+1)) 53*isprime(53#*53+(53#-1))*isprime(53#*53+(53#+1)) 54*isprime(53#*54+(53#-1))*isprime(53#*54+(53#+1)) 55*isprime(53#*55+(53#-1))*isprime(53#*55+(53#+1)) 56*isprime(53#*56+(53#-1))*isprime(53#*56+(53#+1)) 57*isprime(53#*57+(53#-1))*isprime(53#*57+(53#+1)) 58*isprime(53#*58+(53#-1))*isprime(53#*58+(53#+1)) n=27: only 1 twin prime! 912496437361321252439 912496437361321252441 range 53# to 59# probably tepmlate last element:58 middle point of range: (53#+59#)/2=53# *(1+59)/2=53# *30=977674754315701341900 range average twin prime rate: (3/4)*(ln(977674754315701341900))^2=1751,96555=~1752 every 1752 numbers average 1 twin prime in the range:53# to 59# but probably 58 twin prime test: how do not see we, posible 0 twinprime, surprise: 1 twin prime! how is it, posibilities > normal distribition posibilities? note: i am an autistic,alzheimer, parcinson, etc.., brain damage. please forgive. please do not see, my fault! important question: how is it, temlate last element twin prime posibilities > normal distribition posibilities? __ range 59# to 61# template 59#: last probably prime elements: only = 60. 10*isprime(61#*10+(61#-1))*isprime(61#*10+(61#+1)) n=10 1290172194953476680815969 1290172194953476680815971 1 twin prime surprise! normal posibilities: 0 twin prime count highly reality! 1 twin prime count posibilities very low posibilities! but how is it, 1 twin prime count? __ range 61# to 67# range 117288381359406970983270 to 7858321551080267055879090 24 decimal digit to 25 decimal digit. 10*isprime(61#*10+(61#-1))*isprime(61#*10+(61#+1)) n=10: 1 twin prime! 1290172194953476680815969 1290172194953476680815969+2 only 66 probably twin prime test: but 25 decimal digits twinprime easy! how is it, posibilities > normal distribition posibilities? __ range: 67# to 71# 1*isprime(67#*1+(67#-1))*isprime(67#*1+(67#+1)) 2*isprime(67#*2+(67#-1))*isprime(67#*2+(67#+1)) 3*isprime(67#*3+(67#-1))*isprime(67#*3+(67#+1)) 4*isprime(67#*4+(67#-1))*isprime(67#*4+(67#+1)) 5*isprime(67#*5+(67#-1))*isprime(67#*5+(67#+1)) 6*isprime(67#*6+(67#-1))*isprime(67#*6+(67#+1)) 7*isprime(67#*7+(67#-1))*isprime(67#*7+(67#+1)) 8*isprime(67#*8+(67#-1))*isprime(67#*8+(67#+1)) 9*isprime(67#*9+(67#-1))*isprime(67#*9+(67#+1)) 10*isprime(67#*10+(67#-1))*isprime(67#*10+(67#+1)) 11*isprime(67#*11+(67#-1))*isprime(67#*11+(67#+1)) 12*isprime(67#*12+(67#-1))*isprime(67#*12+(67#+1)) 13*isprime(67#*13+(67#-1))*isprime(67#*13+(67#+1)) 14*isprime(67#*14+(67#-1))*isprime(67#*14+(67#+1)) 15*isprime(67#*15+(67#-1))*isprime(67#*15+(67#+1)) 16*isprime(67#*16+(67#-1))*isprime(67#*16+(67#+1)) 17*isprime(67#*17+(67#-1))*isprime(67#*17+(67#+1)) 18*isprime(67#*18+(67#-1))*isprime(67#*18+(67#+1)) 19*isprime(67#*19+(67#-1))*isprime(67#*19+(67#+1)) 20*isprime(67#*20+(67#-1))*isprime(67#*20+(67#+1)) 21*isprime(67#*21+(67#-1))*isprime(67#*21+(67#+1)) 22*isprime(67#*22+(67#-1))*isprime(67#*22+(67#+1)) 23*isprime(67#*23+(67#-1))*isprime(67#*23+(67#+1)) 24*isprime(67#*24+(67#-1))*isprime(67#*24+(67#+1)) 25*isprime(67#*25+(67#-1))*isprime(67#*25+(67#+1)) 26*isprime(67#*26+(67#-1))*isprime(67#*26+(67#+1)) 27*isprime(67#*27+(67#-1))*isprime(67#*27+(67#+1)) 28*isprime(67#*28+(67#-1))*isprime(67#*28+(67#+1)) 29*isprime(67#*29+(67#-1))*isprime(67#*29+(67#+1)) 30*isprime(67#*30+(67#-1))*isprime(67#*30+(67#+1)) 31*isprime(67#*31+(67#-1))*isprime(67#*31+(67#+1)) 32*isprime(67#*32+(67#-1))*isprime(67#*32+(67#+1)) 33*isprime(67#*33+(67#-1))*isprime(67#*33+(67#+1)) 34*isprime(67#*34+(67#-1))*isprime(67#*34+(67#+1)) 35*isprime(67#*35+(67#-1))*isprime(67#*35+(67#+1)) 36*isprime(67#*36+(67#-1))*isprime(67#*36+(67#+1)) 37*isprime(67#*37+(67#-1))*isprime(67#*37+(67#+1)) 38*isprime(67#*38+(67#-1))*isprime(67#*38+(67#+1)) 39*isprime(67#*39+(67#-1))*isprime(67#*39+(67#+1)) 40*isprime(67#*40+(67#-1))*isprime(67#*40+(67#+1)) 41*isprime(67#*41+(67#-1))*isprime(67#*41+(67#+1)) 42*isprime(67#*42+(67#-1))*isprime(67#*42+(67#+1)) 43*isprime(67#*43+(67#-1))*isprime(67#*43+(67#+1)) 44*isprime(67#*44+(67#-1))*isprime(67#*44+(67#+1)) 45*isprime(67#*45+(67#-1))*isprime(67#*45+(67#+1)) 46*isprime(67#*46+(67#-1))*isprime(67#*46+(67#+1)) 47*isprime(67#*47+(67#-1))*isprime(67#*47+(67#+1)) 48*isprime(67#*48+(67#-1))*isprime(67#*48+(67#+1)) 49*isprime(67#*49+(67#-1))*isprime(67#*49+(67#+1)) 50*isprime(67#*50+(67#-1))*isprime(67#*50+(67#+1)) 51*isprime(67#*51+(67#-1))*isprime(67#*51+(67#+1)) 52*isprime(67#*52+(67#-1))*isprime(67#*52+(67#+1)) 53*isprime(67#*53+(67#-1))*isprime(67#*53+(67#+1)) 54*isprime(67#*54+(67#-1))*isprime(67#*54+(67#+1)) 55*isprime(67#*55+(67#-1))*isprime(67#*55+(67#+1)) 56*isprime(67#*56+(67#-1))*isprime(67#*56+(67#+1)) 57*isprime(67#*57+(67#-1))*isprime(67#*57+(67#+1)) 58*isprime(67#*58+(67#-1))*isprime(67#*58+(67#+1)) 59*isprime(67#*59+(67#-1))*isprime(67#*59+(67#+1)) 60*isprime(67#*60+(67#-1))*isprime(67#*60+(67#+1)) 61*isprime(67#*61+(67#-1))*isprime(67#*61+(67#+1)) 62*isprime(67#*62+(67#-1))*isprime(67#*62+(67#+1)) 63*isprime(67#*63+(67#-1))*isprime(67#*63+(67#+1)) 64*isprime(67#*64+(67#-1))*isprime(67#*64+(67#+1)) 65*isprime(67#*65+(67#-1))*isprime(67#*65+(67#+1)) 66*isprime(67#*66+(67#-1))*isprime(67#*66+(67#+1)) 67*isprime(67#*67+(67#-1))*isprime(67#*67+(67#+1)) 68*isprime(67#*68+(67#-1))*isprime(67#*68+(67#+1)) 69*isprime(67#*69+(67#-1))*isprime(67#*69+(67#+1)) 70*isprime(67#*70+(67#-1))*isprime(67#*70+(67#+1)) 0 twin prime in 70 probably twin primes. very normal result! __ range: 71# to 73# 1*isprime(71#*1+(71#-1))*isprime(71#*1+(71#+1)) 2*isprime(71#*2+(71#-1))*isprime(71#*2+(71#+1)) 3*isprime(71#*3+(71#-1))*isprime(71#*3+(71#+1)) 4*isprime(71#*4+(71#-1))*isprime(71#*4+(71#+1)) 5*isprime(71#*5+(71#-1))*isprime(71#*5+(71#+1)) 6*isprime(71#*6+(71#-1))*isprime(71#*6+(71#+1)) 7*isprime(71#*7+(71#-1))*isprime(71#*7+(71#+1)) 8*isprime(71#*8+(71#-1))*isprime(71#*8+(71#+1)) 9*isprime(71#*9+(71#-1))*isprime(71#*9+(71#+1)) 10*isprime(71#*10+(71#-1))*isprime(71#*10+(71#+1)) 11*isprime(71#*11+(71#-1))*isprime(71#*11+(71#+1)) 12*isprime(71#*12+(71#-1))*isprime(71#*12+(71#+1)) 13*isprime(71#*13+(71#-1))*isprime(71#*13+(71#+1)) 14*isprime(71#*14+(71#-1))*isprime(71#*14+(71#+1)) 15*isprime(71#*15+(71#-1))*isprime(71#*15+(71#+1)) 16*isprime(71#*16+(71#-1))*isprime(71#*16+(71#+1)) 17*isprime(71#*17+(71#-1))*isprime(71#*17+(71#+1)) 18*isprime(71#*18+(71#-1))*isprime(71#*18+(71#+1)) 19*isprime(71#*19+(71#-1))*isprime(71#*19+(71#+1)) 20*isprime(71#*20+(71#-1))*isprime(71#*20+(71#+1)) 21*isprime(71#*21+(71#-1))*isprime(71#*21+(71#+1)) 22*isprime(71#*22+(71#-1))*isprime(71#*22+(71#+1)) 23*isprime(71#*23+(71#-1))*isprime(71#*23+(71#+1)) 24*isprime(71#*24+(71#-1))*isprime(71#*24+(71#+1)) 25*isprime(71#*25+(71#-1))*isprime(71#*25+(71#+1)) 26*isprime(71#*26+(71#-1))*isprime(71#*26+(71#+1)) 27*isprime(71#*27+(71#-1))*isprime(71#*27+(71#+1)) 28*isprime(71#*28+(71#-1))*isprime(71#*28+(71#+1)) 29*isprime(71#*29+(71#-1))*isprime(71#*29+(71#+1)) 30*isprime(71#*30+(71#-1))*isprime(71#*30+(71#+1)) 31*isprime(71#*31+(71#-1))*isprime(71#*31+(71#+1)) 32*isprime(71#*32+(71#-1))*isprime(71#*32+(71#+1)) 33*isprime(71#*33+(71#-1))*isprime(71#*33+(71#+1)) 34*isprime(71#*34+(71#-1))*isprime(71#*34+(71#+1)) 35*isprime(71#*35+(71#-1))*isprime(71#*35+(71#+1)) 36*isprime(71#*36+(71#-1))*isprime(71#*36+(71#+1)) 37*isprime(71#*37+(71#-1))*isprime(71#*37+(71#+1)) 38*isprime(71#*38+(71#-1))*isprime(71#*38+(71#+1)) 39*isprime(71#*39+(71#-1))*isprime(71#*39+(71#+1)) 40*isprime(71#*40+(71#-1))*isprime(71#*40+(71#+1)) 41*isprime(71#*41+(71#-1))*isprime(71#*41+(71#+1)) 42*isprime(71#*42+(71#-1))*isprime(71#*42+(71#+1)) 43*isprime(71#*43+(71#-1))*isprime(71#*43+(71#+1)) 44*isprime(71#*44+(71#-1))*isprime(71#*44+(71#+1)) 45*isprime(71#*45+(71#-1))*isprime(71#*45+(71#+1)) 46*isprime(71#*46+(71#-1))*isprime(71#*46+(71#+1)) 47*isprime(71#*47+(71#-1))*isprime(71#*47+(71#+1)) 48*isprime(71#*48+(71#-1))*isprime(71#*48+(71#+1)) 49*isprime(71#*49+(71#-1))*isprime(71#*49+(71#+1)) 50*isprime(71#*50+(71#-1))*isprime(71#*50+(71#+1)) 51*isprime(71#*51+(71#-1))*isprime(71#*51+(71#+1)) 52*isprime(71#*52+(71#-1))*isprime(71#*52+(71#+1)) 53*isprime(71#*53+(71#-1))*isprime(71#*53+(71#+1)) 54*isprime(71#*54+(71#-1))*isprime(71#*54+(71#+1)) 55*isprime(71#*55+(71#-1))*isprime(71#*55+(71#+1)) 56*isprime(71#*56+(71#-1))*isprime(71#*56+(71#+1)) 57*isprime(71#*57+(71#-1))*isprime(71#*57+(71#+1)) 58*isprime(71#*58+(71#-1))*isprime(71#*58+(71#+1)) 59*isprime(71#*59+(71#-1))*isprime(71#*59+(71#+1)) 60*isprime(71#*60+(71#-1))*isprime(71#*60+(71#+1)) 61*isprime(71#*61+(71#-1))*isprime(71#*61+(71#+1)) 62*isprime(71#*62+(71#-1))*isprime(71#*62+(71#+1)) 63*isprime(71#*63+(71#-1))*isprime(71#*63+(71#+1)) 64*isprime(71#*64+(71#-1))*isprime(71#*64+(71#+1)) 65*isprime(71#*65+(71#-1))*isprime(71#*65+(71#+1)) 66*isprime(71#*66+(71#-1))*isprime(71#*66+(71#+1)) 67*isprime(71#*67+(71#-1))*isprime(71#*67+(71#+1)) 68*isprime(71#*68+(71#-1))*isprime(71#*68+(71#+1)) 69*isprime(71#*69+(71#-1))*isprime(71#*69+(71#+1)) 70*isprime(71#*70+(71#-1))*isprime(71#*70+(71#+1)) 71*isprime(71#*71+(71#-1))*isprime(71#*71+(71#+1)) 72*isprime(71#*72+(71#-1))*isprime(71#*72+(71#+1)) n=10,14,52,63 very much twin prime in the probably 72 twin primes! __ range: 73# to 79# 1*isprime(73#*1+(73#-1))*isprime(73#*1+(73#+1)) 2*isprime(73#*2+(73#-1))*isprime(73#*2+(73#+1)) 3*isprime(73#*3+(73#-1))*isprime(73#*3+(73#+1)) 4*isprime(73#*4+(73#-1))*isprime(73#*4+(73#+1)) 5*isprime(73#*5+(73#-1))*isprime(73#*5+(73#+1)) 6*isprime(73#*6+(73#-1))*isprime(73#*6+(73#+1)) 7*isprime(73#*7+(73#-1))*isprime(73#*7+(73#+1)) 8*isprime(73#*8+(73#-1))*isprime(73#*8+(73#+1)) 9*isprime(73#*9+(73#-1))*isprime(73#*9+(73#+1)) 10*isprime(73#*10+(73#-1))*isprime(73#*10+(73#+1)) 11*isprime(73#*11+(73#-1))*isprime(73#*11+(73#+1)) 12*isprime(73#*12+(73#-1))*isprime(73#*12+(73#+1)) 13*isprime(73#*13+(73#-1))*isprime(73#*13+(73#+1)) 14*isprime(73#*14+(73#-1))*isprime(73#*14+(73#+1)) 15*isprime(73#*15+(73#-1))*isprime(73#*15+(73#+1)) 16*isprime(73#*16+(73#-1))*isprime(73#*16+(73#+1)) 17*isprime(73#*17+(73#-1))*isprime(73#*17+(73#+1)) 18*isprime(73#*18+(73#-1))*isprime(73#*18+(73#+1)) 19*isprime(73#*19+(73#-1))*isprime(73#*19+(73#+1)) 20*isprime(73#*20+(73#-1))*isprime(73#*20+(73#+1)) 21*isprime(73#*21+(73#-1))*isprime(73#*21+(73#+1)) 22*isprime(73#*22+(73#-1))*isprime(73#*22+(73#+1)) 23*isprime(73#*23+(73#-1))*isprime(73#*23+(73#+1)) 24*isprime(73#*24+(73#-1))*isprime(73#*24+(73#+1)) 25*isprime(73#*25+(73#-1))*isprime(73#*25+(73#+1)) 26*isprime(73#*26+(73#-1))*isprime(73#*26+(73#+1)) 27*isprime(73#*27+(73#-1))*isprime(73#*27+(73#+1)) 28*isprime(73#*28+(73#-1))*isprime(73#*28+(73#+1)) 29*isprime(73#*29+(73#-1))*isprime(73#*29+(73#+1)) 30*isprime(73#*30+(73#-1))*isprime(73#*30+(73#+1)) 31*isprime(73#*31+(73#-1))*isprime(73#*31+(73#+1)) 32*isprime(73#*32+(73#-1))*isprime(73#*32+(73#+1)) 33*isprime(73#*33+(73#-1))*isprime(73#*33+(73#+1)) 34*isprime(73#*34+(73#-1))*isprime(73#*34+(73#+1)) 35*isprime(73#*35+(73#-1))*isprime(73#*35+(73#+1)) 36*isprime(73#*36+(73#-1))*isprime(73#*36+(73#+1)) 37*isprime(73#*37+(73#-1))*isprime(73#*37+(73#+1)) 38*isprime(73#*38+(73#-1))*isprime(73#*38+(73#+1)) 39*isprime(73#*39+(73#-1))*isprime(73#*39+(73#+1)) 40*isprime(73#*40+(73#-1))*isprime(73#*40+(73#+1)) 41*isprime(73#*41+(73#-1))*isprime(73#*41+(73#+1)) 42*isprime(73#*42+(73#-1))*isprime(73#*42+(73#+1)) 43*isprime(73#*43+(73#-1))*isprime(73#*43+(73#+1)) 44*isprime(73#*44+(73#-1))*isprime(73#*44+(73#+1)) 45*isprime(73#*45+(73#-1))*isprime(73#*45+(73#+1)) 46*isprime(73#*46+(73#-1))*isprime(73#*46+(73#+1)) 47*isprime(73#*47+(73#-1))*isprime(73#*47+(73#+1)) 48*isprime(73#*48+(73#-1))*isprime(73#*48+(73#+1)) 49*isprime(73#*49+(73#-1))*isprime(73#*49+(73#+1)) 50*isprime(73#*50+(73#-1))*isprime(73#*50+(73#+1)) 51*isprime(73#*51+(73#-1))*isprime(73#*51+(73#+1)) 52*isprime(73#*52+(73#-1))*isprime(73#*52+(73#+1)) 53*isprime(73#*53+(73#-1))*isprime(73#*53+(73#+1)) 54*isprime(73#*54+(73#-1))*isprime(73#*54+(73#+1)) 55*isprime(73#*55+(73#-1))*isprime(73#*55+(73#+1)) 56*isprime(73#*56+(73#-1))*isprime(73#*56+(73#+1)) 57*isprime(73#*57+(73#-1))*isprime(73#*57+(73#+1)) 58*isprime(73#*58+(73#-1))*isprime(73#*58+(73#+1)) 59*isprime(73#*59+(73#-1))*isprime(73#*59+(73#+1)) 60*isprime(73#*60+(73#-1))*isprime(73#*60+(73#+1)) 61*isprime(73#*61+(73#-1))*isprime(73#*61+(73#+1)) 62*isprime(73#*62+(73#-1))*isprime(73#*62+(73#+1)) 63*isprime(73#*63+(73#-1))*isprime(73#*63+(73#+1)) 64*isprime(73#*64+(73#-1))*isprime(73#*64+(73#+1)) 65*isprime(73#*65+(73#-1))*isprime(73#*65+(73#+1)) 66*isprime(73#*66+(73#-1))*isprime(73#*66+(73#+1)) 67*isprime(73#*67+(73#-1))*isprime(73#*67+(73#+1)) 68*isprime(73#*68+(73#-1))*isprime(73#*68+(73#+1)) 69*isprime(73#*69+(73#-1))*isprime(73#*69+(73#+1)) 70*isprime(73#*70+(73#-1))*isprime(73#*70+(73#+1)) 71*isprime(73#*71+(73#-1))*isprime(73#*71+(73#+1)) 72*isprime(73#*72+(73#-1))*isprime(73#*72+(73#+1)) 73*isprime(73#*73+(73#-1))*isprime(73#*73+(73#+1)) 74*isprime(73#*74+(73#-1))*isprime(73#*74+(73#+1)) 75*isprime(73#*75+(73#-1))*isprime(73#*75+(73#+1)) 76*isprime(73#*76+(73#-1))*isprime(73#*76+(73#+1)) 77*isprime(73#*77+(73#-1))*isprime(73#*77+(73#+1)) 78*isprime(73#*78+(73#-1))*isprime(73#*78+(73#+1)) no twin prime in the range, very normal result __ range 79# to 83# only probably 82 twinprime test: 19*isprime(79#*19+(79#-1))*isprime(79#*19+(79#+1)) 74*isprime(79#*74+(79#-1))*isprime(79#*74+(79#+1)) n=19,74 2 twinprime. 64352895346813458157981691082599 64352895346813458157981691082599+2 241323357550550468092431341559749 241323357550550468092431341559749+2 32 and 33 decimal digits 2 twin primes! __ range 83# to 89# 82*isprime(83#*82+(83#-1))*isprime(83#*82+(83#+1)) 22166354802209895662516793493401569 22166354802209895662516793493401569+2 35 decimal digits how is 1 twin prime posible, in the probably 88 twin primes __ range 89# to 97# 90*isprime(89#*90+(89#-1))*isprime(89#*90+(89#+1)) 2162955512567445120129198921723606209 2162955512567445120129198921723606209+2 how is 1 twin prime posible, in the probably 96 twin primes __ range 97# to 101# 1*isprime(97#*1+(97#-1))*isprime(97#*1+(97#+1)) 2*isprime(97#*2+(97#-1))*isprime(97#*2+(97#+1)) 3*isprime(97#*3+(97#-1))*isprime(97#*3+(97#+1)) 4*isprime(97#*4+(97#-1))*isprime(97#*4+(97#+1)) 5*isprime(97#*5+(97#-1))*isprime(97#*5+(97#+1)) 6*isprime(97#*6+(97#-1))*isprime(97#*6+(97#+1)) 7*isprime(97#*7+(97#-1))*isprime(97#*7+(97#+1)) 8*isprime(97#*8+(97#-1))*isprime(97#*8+(97#+1)) 9*isprime(97#*9+(97#-1))*isprime(97#*9+(97#+1)) 10*isprime(97#*10+(97#-1))*isprime(97#*10+(97#+1)) 11*isprime(97#*11+(97#-1))*isprime(97#*11+(97#+1)) 12*isprime(97#*12+(97#-1))*isprime(97#*12+(97#+1)) 13*isprime(97#*13+(97#-1))*isprime(97#*13+(97#+1)) 14*isprime(97#*14+(97#-1))*isprime(97#*14+(97#+1)) 15*isprime(97#*15+(97#-1))*isprime(97#*15+(97#+1)) 16*isprime(97#*16+(97#-1))*isprime(97#*16+(97#+1)) 17*isprime(97#*17+(97#-1))*isprime(97#*17+(97#+1)) 18*isprime(97#*18+(97#-1))*isprime(97#*18+(97#+1)) 19*isprime(97#*19+(97#-1))*isprime(97#*19+(97#+1)) 20*isprime(97#*20+(97#-1))*isprime(97#*20+(97#+1)) 21*isprime(97#*21+(97#-1))*isprime(97#*21+(97#+1)) 22*isprime(97#*22+(97#-1))*isprime(97#*22+(97#+1)) 23*isprime(97#*23+(97#-1))*isprime(97#*23+(97#+1)) 24*isprime(97#*24+(97#-1))*isprime(97#*24+(97#+1)) 25*isprime(97#*25+(97#-1))*isprime(97#*25+(97#+1)) 26*isprime(97#*26+(97#-1))*isprime(97#*26+(97#+1)) 27*isprime(97#*27+(97#-1))*isprime(97#*27+(97#+1)) 28*isprime(97#*28+(97#-1))*isprime(97#*28+(97#+1)) 29*isprime(97#*29+(97#-1))*isprime(97#*29+(97#+1)) 30*isprime(97#*30+(97#-1))*isprime(97#*30+(97#+1)) 31*isprime(97#*31+(97#-1))*isprime(97#*31+(97#+1)) 32*isprime(97#*32+(97#-1))*isprime(97#*32+(97#+1)) 33*isprime(97#*33+(97#-1))*isprime(97#*33+(97#+1)) 34*isprime(97#*34+(97#-1))*isprime(97#*34+(97#+1)) 35*isprime(97#*35+(97#-1))*isprime(97#*35+(97#+1)) 36*isprime(97#*36+(97#-1))*isprime(97#*36+(97#+1)) 37*isprime(97#*37+(97#-1))*isprime(97#*37+(97#+1)) 38*isprime(97#*38+(97#-1))*isprime(97#*38+(97#+1)) 39*isprime(97#*39+(97#-1))*isprime(97#*39+(97#+1)) 40*isprime(97#*40+(97#-1))*isprime(97#*40+(97#+1)) 41*isprime(97#*41+(97#-1))*isprime(97#*41+(97#+1)) 42*isprime(97#*42+(97#-1))*isprime(97#*42+(97#+1)) 43*isprime(97#*43+(97#-1))*isprime(97#*43+(97#+1)) 44*isprime(97#*44+(97#-1))*isprime(97#*44+(97#+1)) 45*isprime(97#*45+(97#-1))*isprime(97#*45+(97#+1)) 46*isprime(97#*46+(97#-1))*isprime(97#*46+(97#+1)) 47*isprime(97#*47+(97#-1))*isprime(97#*47+(97#+1)) 48*isprime(97#*48+(97#-1))*isprime(97#*48+(97#+1)) 49*isprime(97#*49+(97#-1))*isprime(97#*49+(97#+1)) 50*isprime(97#*50+(97#-1))*isprime(97#*50+(97#+1)) 51*isprime(97#*51+(97#-1))*isprime(97#*51+(97#+1)) 52*isprime(97#*52+(97#-1))*isprime(97#*52+(97#+1)) 53*isprime(97#*53+(97#-1))*isprime(97#*53+(97#+1)) 54*isprime(97#*54+(97#-1))*isprime(97#*54+(97#+1)) 55*isprime(97#*55+(97#-1))*isprime(97#*55+(97#+1)) 56*isprime(97#*56+(97#-1))*isprime(97#*56+(97#+1)) 57*isprime(97#*57+(97#-1))*isprime(97#*57+(97#+1)) 58*isprime(97#*58+(97#-1))*isprime(97#*58+(97#+1)) 59*isprime(97#*59+(97#-1))*isprime(97#*59+(97#+1)) 60*isprime(97#*60+(97#-1))*isprime(97#*60+(97#+1)) 61*isprime(97#*61+(97#-1))*isprime(97#*61+(97#+1)) 62*isprime(97#*62+(97#-1))*isprime(97#*62+(97#+1)) 63*isprime(97#*63+(97#-1))*isprime(97#*63+(97#+1)) 64*isprime(97#*64+(97#-1))*isprime(97#*64+(97#+1)) 65*isprime(97#*65+(97#-1))*isprime(97#*65+(97#+1)) 66*isprime(97#*66+(97#-1))*isprime(97#*66+(97#+1)) 67*isprime(97#*67+(97#-1))*isprime(97#*67+(97#+1)) 68*isprime(97#*68+(97#-1))*isprime(97#*68+(97#+1)) 69*isprime(97#*69+(97#-1))*isprime(97#*69+(97#+1)) 70*isprime(97#*70+(97#-1))*isprime(97#*70+(97#+1)) 71*isprime(97#*71+(97#-1))*isprime(97#*71+(97#+1)) 72*isprime(97#*72+(97#-1))*isprime(97#*72+(97#+1)) 73*isprime(97#*73+(97#-1))*isprime(97#*73+(97#+1)) 74*isprime(97#*74+(97#-1))*isprime(97#*74+(97#+1)) 75*isprime(97#*75+(97#-1))*isprime(97#*75+(97#+1)) 76*isprime(97#*76+(97#-1))*isprime(97#*76+(97#+1)) 77*isprime(97#*77+(97#-1))*isprime(97#*77+(97#+1)) 78*isprime(97#*78+(97#-1))*isprime(97#*78+(97#+1)) 79*isprime(97#*79+(97#-1))*isprime(97#*79+(97#+1)) 80*isprime(97#*80+(97#-1))*isprime(97#*80+(97#+1)) 81*isprime(97#*81+(97#-1))*isprime(97#*81+(97#+1)) 82*isprime(97#*82+(97#-1))*isprime(97#*82+(97#+1)) 83*isprime(97#*83+(97#-1))*isprime(97#*83+(97#+1)) 84*isprime(97#*84+(97#-1))*isprime(97#*84+(97#+1)) 85*isprime(97#*85+(97#-1))*isprime(97#*85+(97#+1)) 86*isprime(97#*86+(97#-1))*isprime(97#*86+(97#+1)) 87*isprime(97#*87+(97#-1))*isprime(97#*87+(97#+1)) 88*isprime(97#*88+(97#-1))*isprime(97#*88+(97#+1)) 89*isprime(97#*89+(97#-1))*isprime(97#*89+(97#+1)) 90*isprime(97#*90+(97#-1))*isprime(97#*90+(97#+1)) 91*isprime(97#*91+(97#-1))*isprime(97#*91+(97#+1)) 92*isprime(97#*92+(97#-1))*isprime(97#*92+(97#+1)) 93*isprime(97#*93+(97#-1))*isprime(97#*93+(97#+1)) 94*isprime(97#*94+(97#-1))*isprime(97#*94+(97#+1)) 95*isprime(97#*95+(97#-1))*isprime(97#*95+(97#+1)) 96*isprime(97#*96+(97#-1))*isprime(97#*96+(97#+1)) 97*isprime(97#*97+(97#-1))*isprime(97#*97+(97#+1)) 98*isprime(97#*98+(97#-1))*isprime(97#*98+(97#+1)) 99*isprime(97#*99+(97#-1))*isprime(97#*99+(97#+1)) 100*isprime(97#*100+(97#-1))*isprime(97#*100+(97#+1)) n=34 34*isprime(97#*34+(97#-1))*isprime(97#*34+(97#+1)) and n=71 71*isprime(97#*71+(97#-1))*isprime(97#*71+(97#+1)) 166000893404077326582223354607886437039 166000893404077326582223354607886437041 80694878738093144866358575156611462449 80694878738093144866358575156611462451 __ i love this tests. please 101# to 103# ... ... nextprime(1e4#) to nextprime(nextprime(1e4#)) test yourself. for examples: 1*isprime(179#*1+(179#-1))*isprime(179#*1+(179#+1)) 2*isprime(179#*2+(179#-1))*isprime(179#*2+(179#+1)) 3*isprime(179#*3+(179#-1))*isprime(179#*3+(179#+1)) 4*isprime(179#*4+(179#-1))*isprime(179#*4+(179#+1)) 5*isprime(179#*5+(179#-1))*isprime(179#*5+(179#+1)) 6*isprime(179#*6+(179#-1))*isprime(179#*6+(179#+1)) 7*isprime(179#*7+(179#-1))*isprime(179#*7+(179#+1)) 8*isprime(179#*8+(179#-1))*isprime(179#*8+(179#+1)) 9*isprime(179#*9+(179#-1))*isprime(179#*9+(179#+1)) 10*isprime(179#*10+(179#-1))*isprime(179#*10+(179#+1)) 11*isprime(179#*11+(179#-1))*isprime(179#*11+(179#+1)) 12*isprime(179#*12+(179#-1))*isprime(179#*12+(179#+1)) 13*isprime(179#*13+(179#-1))*isprime(179#*13+(179#+1)) 14*isprime(179#*14+(179#-1))*isprime(179#*14+(179#+1)) 15*isprime(179#*15+(179#-1))*isprime(179#*15+(179#+1)) 16*isprime(179#*16+(179#-1))*isprime(179#*16+(179#+1)) 17*isprime(179#*17+(179#-1))*isprime(179#*17+(179#+1)) 18*isprime(179#*18+(179#-1))*isprime(179#*18+(179#+1)) 19*isprime(179#*19+(179#-1))*isprime(179#*19+(179#+1)) 20*isprime(179#*20+(179#-1))*isprime(179#*20+(179#+1)) 21*isprime(179#*21+(179#-1))*isprime(179#*21+(179#+1)) 22*isprime(179#*22+(179#-1))*isprime(179#*22+(179#+1)) 23*isprime(179#*23+(179#-1))*isprime(179#*23+(179#+1)) 24*isprime(179#*24+(179#-1))*isprime(179#*24+(179#+1)) 25*isprime(179#*25+(179#-1))*isprime(179#*25+(179#+1)) 26*isprime(179#*26+(179#-1))*isprime(179#*26+(179#+1)) 27*isprime(179#*27+(179#-1))*isprime(179#*27+(179#+1)) 28*isprime(179#*28+(179#-1))*isprime(179#*28+(179#+1)) 29*isprime(179#*29+(179#-1))*isprime(179#*29+(179#+1)) 30*isprime(179#*30+(179#-1))*isprime(179#*30+(179#+1)) 31*isprime(179#*31+(179#-1))*isprime(179#*31+(179#+1)) 32*isprime(179#*32+(179#-1))*isprime(179#*32+(179#+1)) 33*isprime(179#*33+(179#-1))*isprime(179#*33+(179#+1)) 34*isprime(179#*34+(179#-1))*isprime(179#*34+(179#+1)) 35*isprime(179#*35+(179#-1))*isprime(179#*35+(179#+1)) 36*isprime(179#*36+(179#-1))*isprime(179#*36+(179#+1)) 37*isprime(179#*37+(179#-1))*isprime(179#*37+(179#+1)) 38*isprime(179#*38+(179#-1))*isprime(179#*38+(179#+1)) 39*isprime(179#*39+(179#-1))*isprime(179#*39+(179#+1)) 40*isprime(179#*40+(179#-1))*isprime(179#*40+(179#+1)) 41*isprime(179#*41+(179#-1))*isprime(179#*41+(179#+1)) 42*isprime(179#*42+(179#-1))*isprime(179#*42+(179#+1)) 43*isprime(179#*43+(179#-1))*isprime(179#*43+(179#+1)) 44*isprime(179#*44+(179#-1))*isprime(179#*44+(179#+1)) 45*isprime(179#*45+(179#-1))*isprime(179#*45+(179#+1)) 46*isprime(179#*46+(179#-1))*isprime(179#*46+(179#+1)) 47*isprime(179#*47+(179#-1))*isprime(179#*47+(179#+1)) 48*isprime(179#*48+(179#-1))*isprime(179#*48+(179#+1)) 49*isprime(179#*49+(179#-1))*isprime(179#*49+(179#+1)) 50*isprime(179#*50+(179#-1))*isprime(179#*50+(179#+1)) 51*isprime(179#*51+(179#-1))*isprime(179#*51+(179#+1)) 52*isprime(179#*52+(179#-1))*isprime(179#*52+(179#+1)) 53*isprime(179#*53+(179#-1))*isprime(179#*53+(179#+1)) 54*isprime(179#*54+(179#-1))*isprime(179#*54+(179#+1)) 55*isprime(179#*55+(179#-1))*isprime(179#*55+(179#+1)) 56*isprime(179#*56+(179#-1))*isprime(179#*56+(179#+1)) 57*isprime(179#*57+(179#-1))*isprime(179#*57+(179#+1)) 58*isprime(179#*58+(179#-1))*isprime(179#*58+(179#+1)) 59*isprime(179#*59+(179#-1))*isprime(179#*59+(179#+1)) 60*isprime(179#*60+(179#-1))*isprime(179#*60+(179#+1)) 61*isprime(179#*61+(179#-1))*isprime(179#*61+(179#+1)) 62*isprime(179#*62+(179#-1))*isprime(179#*62+(179#+1)) 63*isprime(179#*63+(179#-1))*isprime(179#*63+(179#+1)) 64*isprime(179#*64+(179#-1))*isprime(179#*64+(179#+1)) 65*isprime(179#*65+(179#-1))*isprime(179#*65+(179#+1)) 66*isprime(179#*66+(179#-1))*isprime(179#*66+(179#+1)) 67*isprime(179#*67+(179#-1))*isprime(179#*67+(179#+1)) 68*isprime(179#*68+(179#-1))*isprime(179#*68+(179#+1)) 69*isprime(179#*69+(179#-1))*isprime(179#*69+(179#+1)) 70*isprime(179#*70+(179#-1))*isprime(179#*70+(179#+1)) 71*isprime(179#*71+(179#-1))*isprime(179#*71+(179#+1)) 72*isprime(179#*72+(179#-1))*isprime(179#*72+(179#+1)) 73*isprime(179#*73+(179#-1))*isprime(179#*73+(179#+1)) 74*isprime(179#*74+(179#-1))*isprime(179#*74+(179#+1)) 75*isprime(179#*75+(179#-1))*isprime(179#*75+(179#+1)) 76*isprime(179#*76+(179#-1))*isprime(179#*76+(179#+1)) 77*isprime(179#*77+(179#-1))*isprime(179#*77+(179#+1)) 78*isprime(179#*78+(179#-1))*isprime(179#*78+(179#+1)) 79*isprime(179#*79+(179#-1))*isprime(179#*79+(179#+1)) 80*isprime(179#*80+(179#-1))*isprime(179#*80+(179#+1)) 81*isprime(179#*81+(179#-1))*isprime(179#*81+(179#+1)) 82*isprime(179#*82+(179#-1))*isprime(179#*82+(179#+1)) 83*isprime(179#*83+(179#-1))*isprime(179#*83+(179#+1)) 84*isprime(179#*84+(179#-1))*isprime(179#*84+(179#+1)) 85*isprime(179#*85+(179#-1))*isprime(179#*85+(179#+1)) 86*isprime(179#*86+(179#-1))*isprime(179#*86+(179#+1)) 87*isprime(179#*87+(179#-1))*isprime(179#*87+(179#+1)) 88*isprime(179#*88+(179#-1))*isprime(179#*88+(179#+1)) 89*isprime(179#*89+(179#-1))*isprime(179#*89+(179#+1)) 90*isprime(179#*90+(179#-1))*isprime(179#*90+(179#+1)) 91*isprime(179#*91+(179#-1))*isprime(179#*91+(179#+1)) 92*isprime(179#*92+(179#-1))*isprime(179#*92+(179#+1)) 93*isprime(179#*93+(179#-1))*isprime(179#*93+(179#+1)) 94*isprime(179#*94+(179#-1))*isprime(179#*94+(179#+1)) 95*isprime(179#*95+(179#-1))*isprime(179#*95+(179#+1)) 96*isprime(179#*96+(179#-1))*isprime(179#*96+(179#+1)) 97*isprime(179#*97+(179#-1))*isprime(179#*97+(179#+1)) 98*isprime(179#*98+(179#-1))*isprime(179#*98+(179#+1)) 99*isprime(179#*99+(179#-1))*isprime(179#*99+(179#+1)) 100*isprime(179#*100+(179#-1))*isprime(179#*100+(179#+1)) 101*isprime(179#*101+(179#-1))*isprime(179#*101+(179#+1)) 102*isprime(179#*102+(179#-1))*isprime(179#*102+(179#+1)) 103*isprime(179#*103+(179#-1))*isprime(179#*103+(179#+1)) 104*isprime(179#*104+(179#-1))*isprime(179#*104+(179#+1)) 105*isprime(179#*105+(179#-1))*isprime(179#*105+(179#+1)) 106*isprime(179#*106+(179#-1))*isprime(179#*106+(179#+1)) 107*isprime(179#*107+(179#-1))*isprime(179#*107+(179#+1)) 108*isprime(179#*108+(179#-1))*isprime(179#*108+(179#+1)) 109*isprime(179#*109+(179#-1))*isprime(179#*109+(179#+1)) 110*isprime(179#*110+(179#-1))*isprime(179#*110+(179#+1)) 111*isprime(179#*111+(179#-1))*isprime(179#*111+(179#+1)) 112*isprime(179#*112+(179#-1))*isprime(179#*112+(179#+1)) 113*isprime(179#*113+(179#-1))*isprime(179#*113+(179#+1)) 114*isprime(179#*114+(179#-1))*isprime(179#*114+(179#+1)) 115*isprime(179#*115+(179#-1))*isprime(179#*115+(179#+1)) 116*isprime(179#*116+(179#-1))*isprime(179#*116+(179#+1)) 117*isprime(179#*117+(179#-1))*isprime(179#*117+(179#+1)) 118*isprime(179#*118+(179#-1))*isprime(179#*118+(179#+1)) 119*isprime(179#*119+(179#-1))*isprime(179#*119+(179#+1)) 120*isprime(179#*120+(179#-1))*isprime(179#*120+(179#+1)) 121*isprime(179#*121+(179#-1))*isprime(179#*121+(179#+1)) 122*isprime(179#*122+(179#-1))*isprime(179#*122+(179#+1)) 123*isprime(179#*123+(179#-1))*isprime(179#*123+(179#+1)) 124*isprime(179#*124+(179#-1))*isprime(179#*124+(179#+1)) 125*isprime(179#*125+(179#-1))*isprime(179#*125+(179#+1)) 126*isprime(179#*126+(179#-1))*isprime(179#*126+(179#+1)) 127*isprime(179#*127+(179#-1))*isprime(179#*127+(179#+1)) 128*isprime(179#*128+(179#-1))*isprime(179#*128+(179#+1)) 129*isprime(179#*129+(179#-1))*isprime(179#*129+(179#+1)) 130*isprime(179#*130+(179#-1))*isprime(179#*130+(179#+1)) 131*isprime(179#*131+(179#-1))*isprime(179#*131+(179#+1)) 132*isprime(179#*132+(179#-1))*isprime(179#*132+(179#+1)) 133*isprime(179#*133+(179#-1))*isprime(179#*133+(179#+1)) 134*isprime(179#*134+(179#-1))*isprime(179#*134+(179#+1)) 135*isprime(179#*135+(179#-1))*isprime(179#*135+(179#+1)) 136*isprime(179#*136+(179#-1))*isprime(179#*136+(179#+1)) 137*isprime(179#*137+(179#-1))*isprime(179#*137+(179#+1)) 138*isprime(179#*138+(179#-1))*isprime(179#*138+(179#+1)) 139*isprime(179#*139+(179#-1))*isprime(179#*139+(179#+1)) 140*isprime(179#*140+(179#-1))*isprime(179#*140+(179#+1)) 141*isprime(179#*141+(179#-1))*isprime(179#*141+(179#+1)) 142*isprime(179#*142+(179#-1))*isprime(179#*142+(179#+1)) 143*isprime(179#*143+(179#-1))*isprime(179#*143+(179#+1)) 144*isprime(179#*144+(179#-1))*isprime(179#*144+(179#+1)) 145*isprime(179#*145+(179#-1))*isprime(179#*145+(179#+1)) 146*isprime(179#*146+(179#-1))*isprime(179#*146+(179#+1)) 147*isprime(179#*147+(179#-1))*isprime(179#*147+(179#+1)) 148*isprime(179#*148+(179#-1))*isprime(179#*148+(179#+1)) 149*isprime(179#*149+(179#-1))*isprime(179#*149+(179#+1)) 150*isprime(179#*150+(179#-1))*isprime(179#*150+(179#+1)) 151*isprime(179#*151+(179#-1))*isprime(179#*151+(179#+1)) 152*isprime(179#*152+(179#-1))*isprime(179#*152+(179#+1)) 153*isprime(179#*153+(179#-1))*isprime(179#*153+(179#+1)) 154*isprime(179#*154+(179#-1))*isprime(179#*154+(179#+1)) 155*isprime(179#*155+(179#-1))*isprime(179#*155+(179#+1)) 156*isprime(179#*156+(179#-1))*isprime(179#*156+(179#+1)) 157*isprime(179#*157+(179#-1))*isprime(179#*157+(179#+1)) 158*isprime(179#*158+(179#-1))*isprime(179#*158+(179#+1)) 159*isprime(179#*159+(179#-1))*isprime(179#*159+(179#+1)) 160*isprime(179#*160+(179#-1))*isprime(179#*160+(179#+1)) 161*isprime(179#*161+(179#-1))*isprime(179#*161+(179#+1)) 162*isprime(179#*162+(179#-1))*isprime(179#*162+(179#+1)) 163*isprime(179#*163+(179#-1))*isprime(179#*163+(179#+1)) 164*isprime(179#*164+(179#-1))*isprime(179#*164+(179#+1)) 165*isprime(179#*165+(179#-1))*isprime(179#*165+(179#+1)) 166*isprime(179#*166+(179#-1))*isprime(179#*166+(179#+1)) 167*isprime(179#*167+(179#-1))*isprime(179#*167+(179#+1)) 168*isprime(179#*168+(179#-1))*isprime(179#*168+(179#+1)) 169*isprime(179#*169+(179#-1))*isprime(179#*169+(179#+1)) 170*isprime(179#*170+(179#-1))*isprime(179#*170+(179#+1)) 171*isprime(179#*171+(179#-1))*isprime(179#*171+(179#+1)) 172*isprime(179#*172+(179#-1))*isprime(179#*172+(179#+1)) 173*isprime(179#*173+(179#-1))*isprime(179#*173+(179#+1)) 174*isprime(179#*174+(179#-1))*isprime(179#*174+(179#+1)) 175*isprime(179#*175+(179#-1))*isprime(179#*175+(179#+1)) 176*isprime(179#*176+(179#-1))*isprime(179#*176+(179#+1)) 177*isprime(179#*177+(179#-1))*isprime(179#*177+(179#+1)) 178*isprime(179#*178+(179#-1))*isprime(179#*178+(179#+1)) 179*isprime(179#*179+(179#-1))*isprime(179#*179+(179#+1)) 180*isprime(179#*180+(179#-1))*isprime(179#*180+(179#+1)) n=172 twin prime! 172*isprime(179#*172+(179#-1))*isprime(179#*172+(179#+1)) (179#*172+(179#-1)) (179#*172+(179#+1)) 5158789550582100068566834449931204367324113440624489853008262468109349569 (73 decimal digits) is prime 5158789550582100068566834449931204367324113440624489853008262468109349571 (73 decimal digits) is prime 180*2=360 probably prime test only 1200 miliseconds=~ 1 second but easy find 1 twinprime! important question? how is it? prime template's last probably twin prime elements, twin prime count greater than 0 posibilities, bigger than normal distribition posibilities? this is important question, don't forget! if anyone answer and proofed this question, easy proofed infinity twin primes there are! math very simple! if some think and if look full picture!
 2018-08-30, 08:50 #2 hal1se   Jul 2018 23·5 Posts what is posibilies? 79*isprime(101#*79+(101#-1))*isprime(101#*79+(101#+1)) 47*isprime(103#*47+(103#-1))*isprime(103#*47+(103#+1)) 46*isprime(107#*46+(107#-1))*isprime(107#*46+(107#+1)) 1*isprime(113#*1+(113#-1))*isprime(113#*1+(113#+1)) 11*isprime(127#*11+(127#-1))*isprime(127#*11+(127#+1)) 29*isprime(137#*29+(137#-1))*isprime(137#*29+(137#+1)) 53*isprime(151#*53+(151#-1))*isprime(151#*53+(151#+1)) 59*isprime(151#*59+(151#-1))*isprime(151#*59+(151#+1)) 107*isprime(163#*107+(163#-1))*isprime(163#*107+(163#+1)) 172*isprime(179#*172+(179#-1))*isprime(179#*172+(179#+1)) 12*isprime(193#*12+(193#-1))*isprime(193#*12+(193#+1)) 172*isprime(227#*172+(227#-1))*isprime(227#*172+(227#+1)) 68*isprime(257#*68+(257#-1))*isprime(257#*68+(257#+1)) 120*isprime(263#*120+(263#-1))*isprime(263#*120+(263#+1)) 35*isprime(277#*35+(277#-1))*isprime(277#*35+(277#+1)) __ (277#*35+(277#-1)) (277#*35+(277#+1)) 3157738909381382798745796947067407592867578860122933360095448333290935384829812781822776257744020941448521031830039 3157738909381382798745796947067407592867578860122933360095448333290935384829812781822776257744020941448521031830041 115 decimal digits twinprime count=1 posibilities from 280 probably twins? what is posibilities, real twin count >0 from prime template's last element probably twin primes? this posibilities > normal distribition posibilities! __ 169*isprime(283#*169+(283#-1))*isprime(283#*169+(283#+1)) 203*isprime(293#*203+(293#-1))*isprime(293#*203+(293#+1)) 284*isprime(307#*284+(307#-1))*isprime(307#*284+(307#+1)) 246*isprime(313#*246+(313#-1))*isprime(313#*246+(313#+1)) 104*isprime(347#*104+(347#-1))*isprime(347#*104+(347#+1)) 292*isprime(347#*292+(347#-1))*isprime(347#*292+(347#+1)) __ 347#*104+(347#-+1) 347#*292+(347#-+1) 7868883694105963077478274378618356797758218387401816932316269834340593371693121233072845496377529219422653670780988755 5784309435133443838649 (140 decimal digits) is prime 7868883694105963077478274378618356797758218387401816932316269834340593371693121233072845496377529219422653670780988755 5784309435133443838651 (140 decimal digits) is prime 2195793259402902077810604183747789087374436178579745105874921010915994150386747163133660695655824820276988119560790195 60426692042800943283089 (141 decimal digits) is prime 2195793259402902077810604183747789087374436178579745105874921010915994150386747163133660695655824820276988119560790195 60426692042800943283091 (141 decimal digits) is prime what is posibilities, about 140 decimal digits twin primes count=2, from 348 probably twins? __ i am boring, this tests! i will go to holiday, i.
 2018-08-30, 14:38 #3 Batalov     "Serge" Mar 2008 Phi(4,2^7658614+1)/2 32×1,117 Posts Look here http://primes.utm.edu/top20/page.php?id=1 and stop yanking everyone's sleeves about 140-digit primes.
 2018-08-30, 14:46 #4 paulunderwood     Sep 2002 Database er0rr 106108 Posts Also, a collaboration of the world's greatest mathematicians have made an attempt on The Twin Prime Conjecture: https://en.wikipedia.org/wiki/Polyma...ject#Polymath8. I really think you will get absolutely no where new (especially with long boring lists of computer output). Last fiddled with by paulunderwood on 2018-08-30 at 14:52
 2018-08-30, 16:14 #5 Xyzzy     Aug 2002 2×7×13×47 Posts Any post longer than a screen is immediately skipped by us, and maybe most others?
2018-08-30, 16:27   #6
chalsall
If I May

"Chris Halsall"
Sep 2002

3·3,691 Posts

Quote:
 Originally Posted by Xyzzy Any post longer than a screen is immediately skipped by us, and maybe most others?
Less is more.

Last fiddled with by chalsall on 2018-08-30 at 16:27

 2018-08-31, 07:45 #7 Collag3n   Feb 2018 23 Posts The symmetry and regularity found in the primorials $p_a$# when you sieve up to the $a^{th}$ prime is well known. The count can be derived from the Euler totient formula: $(3-1)(5-1)(7-1)(11-1)....(p_a-1)$. The same count can be done for twins: the 1,3,15,135,.... you found which comes from the same kind of formulas: $(3-2)(5-2)(7-2)(11-2)....(p_a-2)$. Unfortunately, this is not enough to prove infinity. You have to prove that they are not all sieved by subsequent $p_a$. And this can't be done with probabilities. Last fiddled with by Collag3n on 2018-08-31 at 08:06
 2018-08-31, 13:12 #8 hal1se   Jul 2018 23×5 Posts infinity ranges, at least 1 twin count. 347# to 349# range :349#-347#=347#*(349-1) middle point of range=(347#+349#)/2=347#*(1+349)/2 range rough twin count=(4/3)*range/(ln(middle point of range)) ^2 = (4/3)*2,60797288e140/(322,63306975911838731774988255887)^2 =3,341e+135 347# template probably twin elements: 9,002380832605367660054087978901062006539085458962789840394506950149331_.. .._553222941092693963879642982711996155339023418711102008819580078125e+135 prime template's last probably twin prime elemens, twin count probabilities average= 3,341e+135/9,00238e+135=0,37 (0,37 only this range, for example 5# to 7# average probabiliy=3,3) twin count=2 near 0,37 average probabiliy. twin count=0 normal but twin count=1,2,...,7 normal again! but twin count=17 not normal! every prime template's probably twin element (last element or any probably twin element) average probabilities = ? for example: 347# to 349# ranges twin count > 1e135 but we look only this time: at least 1 twin count, in the range. question: average probabilites > 0 allways? we don't use, template probably twin element count! we don't use, premorial range rough count! but easy prof, still: if some one, answer and proofed, every prime template's probably twin element, average probabilites > 0 allways then: infinity ranges, at least 1 twin count. you must look hypergeometric and think complex variable domains. easy proof, don't forget! math very simple.
2018-09-02, 03:37   #9
hal1se

Jul 2018

23·5 Posts
your calc. only:1,902 only 3 digit after comma!

Quote:
 Originally Posted by paulunderwood Also, a collaboration of the world's greatest mathematicians have made an attempt on The Twin Prime Conjecture: https://en.wikipedia.org/wiki/Polyma...ject#Polymath8. I really think you will get absolutely no where new (especially with long boring lists of computer output).

http://www.britannica.com/science/twin-prime-conjecture
In 2010 Nicely gave a value for Brun’s constant of
1.902160583209 ± 0.000000000781 based on all twin primes less than 2 × 10^16
0.000000000781
__123456789012
1,902160583209+0,000000000781=
1,90216058399
1,902160583209-0,000000000781=
1,902160582428 **
__12345678
8 digit after comma!
range 2e16 to 1e17
real prime count:2075693725704225
ln(middle point of range)=
=ln((2e16+1e17)/2)=ln(6e16)=38,633120957132785945100340633331
rough twin count=
=1,3219*(2075693725704225/38,633120957132785945100340633331=
=71023501804397 -+(%0,3)
1/1e17+1/1e17: last twin , 2 prime about reciprocity
71023501804397*2/1e17=0,001420
0,001420
__123
3th digit after comma :1
1,902160582428 **
__12345678
4. digit after comma not meanfull!
so:
1,902 only true!
if some one say, your calc. rough!
not important rough!
we use last range element:2*1/1e17
but 2*2/1e16 to 2*1/1e17 elements sum>71023501804397*2/1e17
so, may be:0,001420 up to another great number!
but 2. digit not wrong.
only 4. and may be 3. digit after comma false!
very clear!

2018-09-02, 04:29   #10
hal1se

Jul 2018

23×5 Posts

Quote:
 Originally Posted by hal1se but 2*2/1e16 to 2*1/1e17 elements sum>71023501804397*2/1e17
sory, my brain damage!
2/2e16 to 2/1e17 reciproc element sum>71023501804397*2/1e17

this brun sum, must be at least : 128 bit computer, and:
2^128 /2= ~ 38 decimal floating point.
38 flating point calc.: from 3 to 1e29, at least 3 to 1e23
___
if some one any idea show:
for example:
any primorial range at least 1 twin count analysis, how method show?
my 'computer' output only for people think!

"find easy twin, in inifinty twin" only teoric find easy infinity twin, so proofed infinity twin!
but many people not understand my idea, not look large perspective!
many pepole think: primes: only positive real integers!
if many people not understand and can not large think!
may be: must be this is reality!

2018-09-02, 06:20   #11
Batalov

"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

235058 Posts

Quote:
 Originally Posted by hal1se if many people not understand and can not large think!
Look, Ma! No hands!!
Attached Thumbnails

 Similar Threads Thread Thread Starter Forum Replies Last Post Hugh Math 64 2011-01-26 08:45 cipher Twin Prime Search 5 2009-04-16 21:53 MooooMoo Twin Prime Search 49 2006-12-31 21:52 MooooMoo Twin Prime Search 2 2006-05-11 23:38 R.D. Silverman Math 8 2005-07-15 21:56

All times are UTC. The time now is 03:07.

Tue Jan 31 03:07:03 UTC 2023 up 166 days, 35 mins, 0 users, load averages: 1.09, 1.14, 1.10