mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > And now for something completely different

Reply
 
Thread Tools
Old 2018-02-23, 12:03   #177
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

284010 Posts
Default

CK240 tested to n=10k
primes
Code:
(-1) 1, 261
(+1) 3, 201, 779, 1211
kar_bon is offline   Reply With Quote
Old 2018-02-24, 11:28   #178
sweety439
 
sweety439's Avatar
 
Nov 2016

41578 Posts
Default

CK360 tested to n=10K

Primes:

Code:
(360^1-1)^2-2
(360^3-1)^2-2
(360^4+1)^2-2
(360^7-1)^2-2
(360^15+1)^2-2
(360^16+1)^2-2
(360^31-1)^2-2
(360^63+1)^2-2
(360^108+1)^2-2
(360^1080-1)^2-2
(360^2290+1)^2-2
sweety439 is offline   Reply With Quote
Old 2018-02-24, 11:31   #179
sweety439
 
sweety439's Avatar
 
Nov 2016

17×127 Posts
Default

CK242 tested to n=10K

primes:

Code:
(242^4+1)^2-2
(242^5-1)^2-2
(242^13+1)^2-2
(242^34+1)^2-2
(242^93+1)^2-2
(242^119-1)^2-2
(242^396+1)^2-2
(242^514+1)^2-2
(242^2056+1)^2-2
(242^7765+1)^2-2
CK244 tested to n=10K

primes:

Code:
(244^3+1)^2-2
(244^17+1)^2-2
(244^19+1)^2-2
(244^21+1)^2-2
(244^25-1)^2-2
(244^65+1)^2-2
(244^70+1)^2-2
(244^200+1)^2-2
(244^404-1)^2-2
(244^1128+1)^2-2
(244^6742+1)^2-2
(244^7510+1)^2-2
CK246 tested to n=10K

primes:

Code:
(246^1+1)^2-2
(246^4-1)^2-2
(246^9+1)^2-2
(246^46-1)^2-2
(246^57-1)^2-2
(246^122-1)^2-2
(246^236+1)^2-2
(246^266-1)^2-2
(246^364-1)^2-2
(246^561+1)^2-2
(246^565-1)^2-2
(246^735+1)^2-2
(246^741+1)^2-2
(246^816+1)^2-2
(246^2302-1)^2-2
(246^6940+1)^2-2
(246^7589-1)^2-2
sweety439 is offline   Reply With Quote
Old 2018-02-24, 11:33   #180
sweety439
 
sweety439's Avatar
 
Nov 2016

1000011011112 Posts
Default

CK248 tested to n=10K

primes:

Code:
(248^1-1)^2-2
(248^6-1)^2-2
(248^45+1)^2-2
(248^55-1)^2-2
(248^100+1)^2-2
(248^1248-1)^2-2
(248^3588+1)^2-2
CK250 tested to n=10K

primes:

Code:
(250^4-1)^2-2
(250^7+1)^2-2
(250^34-1)^2-2
(250^90+1)^2-2
(250^132-1)^2-2
CK254 tested to n=10K

primes:

Code:
(254^1-1)^2-2
(254^3+1)^2-2
(254^27-1)^2-2
(254^45-1)^2-2
(254^56+1)^2-2
(254^144+1)^2-2
(254^295-1)^2-2
(254^2730+1)^2-2
(254^5864+1)^2-2
sweety439 is offline   Reply With Quote
Old 2018-02-24, 11:44   #181
sweety439
 
sweety439's Avatar
 
Nov 2016

17·127 Posts
Default

Quote:
Originally Posted by sweety439 View Post
CK360 tested to n=10K

Primes:

Code:
(360^1-1)^2-2
(360^3-1)^2-2
(360^4+1)^2-2
(360^7-1)^2-2
(360^15+1)^2-2
(360^16+1)^2-2
(360^31-1)^2-2
(360^63+1)^2-2
(360^108+1)^2-2
(360^1080-1)^2-2
(360^2290+1)^2-2
Result files: (this means that I really tested n to 10K)
Attached Files
File Type: txt 360.txt (177.9 KB, 247 views)
File Type: log pfgw.log (162 Bytes, 36 views)

Last fiddled with by sweety439 on 2018-02-24 at 11:45
sweety439 is offline   Reply With Quote
Old 2018-02-25, 19:55   #182
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

23×5×71 Posts
Default

CK432 tested to n=10k
primes
Code:
(-1) 8742
(+1) 6, 1227
kar_bon is offline   Reply With Quote
Old 2018-02-27, 02:13   #183
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

237008 Posts
Default

Base 48 is complete to n=30K. 4 new primes found for n=10K-30K:

(48^15067-1)^2-2
(48^15085-1)^2-2

(48^13274+1)^2-2
(48^25978+1)^2-2

Last fiddled with by gd_barnes on 2018-02-27 at 02:13
gd_barnes is offline   Reply With Quote
Old 2018-02-27, 17:20   #184
gd_barnes
 
gd_barnes's Avatar
 
May 2007
Kansas; USA

26·3·53 Posts
Default

Jiahao He has completed bases 206, 208, 210, and 212 to n=10K. Primes found:

Code:
Base 206:
(206^1-1)^2-2
(206^2-1)^2-2
(206^6+1)^2-2
(206^103-1)^2-2
(206^684+1)^2-2
(206^2529+1)^2-2
(206^2550+1)^2-2
(206^2607-1)^2-2
 
Base 208:
(208^2+1)^2-2
(208^3-1)^2-2
(208^10-1)^2-2
(208^24-1)^2-2
(208^660-1)^2-2
(208^1468-1)^2-2
(208^2244+1)^2-2
 
Base 210:
(210^1+1)^2-2
(210^5+1)^2-2
(210^7+1)^2-2
(210^7-1)^2-2
(210^17-1)^2-2
(210^34+1)^2-2
(210^254+1)^2-2
(210^1197-1)^2-2
(210^6961+1)^2-2
 
Base 212:
(212^1-1)^2-2
(212^2+1)^2-2
(212^6-1)^2-2
(212^14+1)^2-2
(212^33+1)^2-2
(212^503+1)^2-2
(212^580-1)^2-2
(212^1601+1)^2-2
(212^1933-1)^2-2
(212^4050-1)^2-2
(212^4230+1)^2-2

Last fiddled with by gd_barnes on 2018-03-11 at 04:08
gd_barnes is offline   Reply With Quote
Old 2018-02-28, 16:44   #185
sweety439
 
sweety439's Avatar
 
Nov 2016

17·127 Posts
Default

CK394 tested to n=10K, only one prime found:

(394^198+1)^2-2

Still no prime found for the Carol side.

This base seems to be a low-weight base.

Update the result file.
Attached Files
File Type: txt CK394.txt (135.0 KB, 240 views)

Last fiddled with by sweety439 on 2018-02-28 at 17:26
sweety439 is offline   Reply With Quote
Old 2018-02-28, 18:06   #186
sweety439
 
sweety439's Avatar
 
Nov 2016

17×127 Posts
Default

CK362 tested to n=10K.

Primes:

(362^156+1)^2-2
(362^264+1)^2-2
(362^630+1)^2-2
(362^794+1)^2-2

Still no prime found for the Carol side.
sweety439 is offline   Reply With Quote
Old 2018-03-01, 08:16   #187
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

23·5·71 Posts
Default

CK600 tested to n=10k.
primes
Code:
(-1) 4606, 6509
(+1) 61
kar_bon is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Carol / Kynea Coordinated Search - Reservations rogue And now for something completely different 257 2020-06-20 03:13
Distribution of Mersenne primes before and after couples of primes found emily Math 34 2017-07-16 18:44
Carol / Kynea search (Near-power primes) rogue And now for something completely different 37 2016-06-18 17:58
a 18+ Christmas carol science_man_88 Lounge 10 2010-12-13 23:26
possible primes (real primes & poss.prime products) troels munkner Miscellaneous Math 4 2006-06-02 08:35

All times are UTC. The time now is 22:10.

Mon Aug 10 22:10:51 UTC 2020 up 24 days, 17:57, 2 users, load averages: 3.03, 2.88, 2.45

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.