![]() |
![]() |
#1 |
Sep 2002
Database er0rr
2×29×71 Posts |
![]() Code:
{ tst(n,a)=kronecker(a^2-4,n)==-1&& gcd((a^3-a)*(a+4),n)==1&& Mod(a-1,n)^(n-1)==1&& Mod(a,n)^(n-1)==1&& Mod(a+1,n)^(n-1)==1&& Mod(a+4,n)^(n-1)==1&& Mod(Mod(x+2,n),x^2-a*x+1)^(n+1)==2*a+5;} ![]() |
![]() |
![]() |
![]() |
#2 |
Sep 2002
Database er0rr
2·29·71 Posts |
![]()
I can save a few Selfridges by using the weaker form of Fermat's Little Theorem:
Code:
{ tst(n,a)=kronecker(a^2-4,n)==-1&& gcd(a+4,n)==1&& Mod(a-1,n)^n==a-1&& Mod(a,n)^n==a&& Mod(a+1,n)^n==a+1&& Mod(a+4,n)^(n-1)==1&& Mod(Mod(x+2,n),x^2-a*x+1)^(n+1)==2*a+5; } "a" can also be +/-1 which means bases 2 and 5, bases 2 and 3 respectfully plus the Frobenius. The Frobenius has also been tested up to 2^50 (excluding the cases for the previous paragraph). If "a" is +/-3 then a-1 and a+1 are the same Fermat PRP test, resuting in bases 2, 3 and 1 or 7 Fermat PRPs plus Frobenius. In summary: a=0 => 1+2 Selfridges a=-1 => 1+1+2 Selfridges a=1 => 1+1+2 Selfridges a=-3 => 1+1+2 Selfridges a=3 => 1+1+1+2 Selfridges a=4 => 1+1+1+2 Selfridges a=-5 => 1+1+1+2 Selfridges otherwise => 1+1+1+1+2 Selfrdges ![]() Last fiddled with by paulunderwood on 2021-10-14 at 07:34 |
![]() |
![]() |
![]() |
#3 |
Sep 2002
Database er0rr
101616 Posts |
![]()
Semi-primes are being stubborn, but when I feed in Carmichael numbers counterexamples abound such as [n,a]=[19384289, 8494896]
This is yet another test that shows that X Frobenius tests with X parameters can be fooled. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
I wonder if there is a single precision version LL-test for Nvidia GPU computing | Neutron3529 | GPU Computing | 45 | 2022-04-18 19:41 |
was: a deterministic test for primes p=1 or p=7 mod 8 with 2 Selfridges | bhelmes | Miscellaneous Math | 0 | 2021-06-07 00:43 |
a d̶e̶t̶e̶r̶m̶i̶n̶i̶s̶t̶i̶c̶ test for primes p=1 or p=7 mod 8 with 2 (??) Selfridges | bhelmes | Miscellaneous Math | 35 | 2021-04-10 17:01 |
1+1 Selfridges PRP test | paulunderwood | Miscellaneous Math | 21 | 2020-11-20 13:16 |
New program to test a single factor | dsouza123 | Programming | 6 | 2004-01-13 03:53 |