![]() |
![]() |
#353 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]() |
![]() |
![]() |
#354 | |
"Forget I exist"
Jul 2009
Dumbassville
26×131 Posts |
![]() Code:
? a=[2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423, 9689,9941,11213,19937,21701,23209,44497,86243,110503,132049, 216091,756839, 859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583, 25964951,30402457,32582657,37156667,42643801,43112609,57885161]; b=vector(#a,n,n);for(y=1,#a,print((sum(x=1,y,a[x]*b[x])%120)%2","y)) Quote:
Last fiddled with by science_man_88 on 2013-10-10 at 00:55 |
|
![]() |
![]() |
#355 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]() Code:
? 2*(x-y)^2-1 %9 = 2*x^2 - 4*y*x + (2*y^2 - 1) Code:
? %-(2*x^2+4*x+1) %10 = (-4*y - 4)*x + (2*y^2 - 2) Last fiddled with by science_man_88 on 2013-10-25 at 20:42 |
![]() |
![]() |
#356 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]() Code:
(2*m^2 - 2)*z^2 + (4*m*d - 4)*z + (2*d^2 - 2) |
![]() |
![]() |
#357 |
"Forget I exist"
Jul 2009
Dumbassville
203008 Posts |
![]()
one thing I've realized is this mz+d form shows for the next residue to be 0 (because z mod z=0 mod z) the only part that needs to be shown to be 0 is
|
![]() |
![]() |
#358 |
"Forget I exist"
Jul 2009
Dumbassville
26×131 Posts |
![]() Code:
? factormod(2*x^2+4*x+1,127) %4 = [Mod(1, 127)*x + Mod(9, 127) 1] [Mod(1, 127)*x + Mod(120, 127) 1] Last fiddled with by science_man_88 on 2013-11-15 at 19:24 |
![]() |
![]() |
#359 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]()
127*(y*x+z)+x+9
127*(y*x+z)+x+120 is what I get for conversion from mod to equations. |
![]() |
![]() |
#360 |
"Forget I exist"
Jul 2009
Dumbassville
26·131 Posts |
![]() Code:
? MMTF(x,p) = { a=2;for(y=2,#binary(p),if(binary(p)[y]==1,a=(2*a^2)%x,a=(a^2)%x));a-1 } %1 = (x,p)->a=2;for(y=2,#binary(p),if(binary(p)[y]==1,a=(2*a^2)%x,a=(a^2)%x));a-1 ? MMTF(47,23) %2 = 0 ? MMLL(x,p) = { s=4;for(y=1,p-2,s=(s^2-2)%x);s } %3 = (x,p)->s=4;for(y=1,p-2,s=(s^2-2)%x);s ? MMLL(2047,11) %4 = 1736 ? MMTF(15,7) %5 = 7 ? MMTF(15,127) %6 = 7 ? MMTF(255,127) %7 = 127 ? MMLL(255,127) %8 = 194 ? MMLL(15,7) %9 = 14 Last fiddled with by science_man_88 on 2014-03-25 at 22:01 |
![]() |
![]() |
#361 | |
"Forget I exist"
Jul 2009
Dumbassville
203008 Posts |
![]() Quote:
|
|
![]() |
![]() |
#362 |
"Forget I exist"
Jul 2009
Dumbassville
20C016 Posts |
![]()
Okay this time I'm just grasping at things, but could Fermat's little theorem be used to figure out values for q=2^p-1 that could be prime through use of the binomial theorem ? because 4^(q-1)==(2^2)^(p-1) = (2^(2*p-2)) 1 mod q and 14^(q-1) = 1 mod q that is (4+10)^(p-1) which can be expanded under the binomial theorem, or is this just over complicating things ?
Last fiddled with by science_man_88 on 2014-04-09 at 22:57 |
![]() |
![]() |
#363 |
If I May
"Chris Halsall"
Sep 2002
Barbados
1045410 Posts |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 3 | 2017-08-10 13:47 |
Distribution of Mersenne primes before and after couples of primes found | emily | Math | 34 | 2017-07-16 18:44 |
Mersenne primes and class field theory | Nick | Math | 4 | 2017-04-01 16:26 |
Basic Number Theory 11: Gaussian primes | Nick | Number Theory Discussion Group | 0 | 2016-12-03 11:42 |
Mersenne Wiki: Improving the mersenne primes web site by FOSS methods | optim | PrimeNet | 13 | 2004-07-09 13:51 |