mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > Factoring

Reply
 
Thread Tools
Old 2003-09-19, 17:08   #1
McBryce
 
Jun 2003

1112 Posts
Question Factorization of M(738)

Hi,

I look for the factorization of M(738)... factoredM.txt didn't help much. These are the factors I found:

Code:
3^3*7*19*73*83*739*13367*18451*165313*174907*3887047*26309368807003
I think, it's really simple to find the other factors somewhere, but I couldn't manage to get them.


Martin
McBryce is offline   Reply With Quote
Old 2003-09-19, 17:54   #2
Matthes
 
Matthes's Avatar
 
May 2003

23×3 Posts
Default

Dario Alpern Site ( http://www.alpertron.com.ar/ECM.HTM ) gives me:

2^738 - 1 =

1
445895 146858 607358 437943 727208 769466 035893 202868 007692 637901 788601 699241 144933 631951 807447 549557 758449 099707 135121 406247 999127 995329 736165 184795 181305 316406 492567 598839 150653 733187 621116 264206 194563 768053 163279 547256 274943

=

3 ^ 3 x 7 x 19 x 73 x 83 x 739 x 13367 x 18451 x 165313
x 174907 x 3 887047 x 164 511353 x 8831 418697
x 26 309368 807003 x 6376 386802 464073
x 13194 317913 029593 x 177722 253954 175633
x 23 365041 083799 063007 245010 292408 927930 007906 086731
x 242 930150 369581 725249 341464 475421 249205 592384 370695 685937

My apologies for the format the number are presented in ...

Hth, Matthes
Matthes is offline   Reply With Quote
Old 2003-09-19, 19:32   #3
alpertron
 
alpertron's Avatar
 
Aug 2002
Buenos Aires, Argentina

5·277 Posts
Default

Quote:
Originally posted by Matthes

3 ^ 3 x 7 x 19 x 73 x 83 x 739 x 13367 x 18451 x 165313
x 174907 x 3 887047 x 164 511353 x 8831 418697
x 26 309368 807003 x 6376 386802 464073
x 13194 317913 029593 x 177722 253954 175633
x 23 365041 083799 063007 245010 292408 927930 007906 086731
x 242 930150 369581 725249 341464 475421 249205 592384 370695 685937

My apologies for the format the number are presented in ...

Hth, Matthes [/B]
You can change this format by entering a number in the "Number of digits in a group" input box located below the applet. For example, using the number 60, I get:

3 ^ 3 x 7 x 19
x 73 x 83 x 739 x 13367 x 18451 x 165313 x 174907 x 3887047 x 164511353 x
8831418697 x 26309368807003 x 6376386802464073 x 13194317913029593 x
177722253954175633 x 23365041083799063007245010292408927930007906086731 x 242930150369581725249341464475421249205592384370695685937

Notice the my applet uses Will Edgington's data for numbers of the form 2^m +/- 1, and Brent's data for numbers of the form c^m +/- 1 where c > 2.
alpertron is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Factorization of RSA-180 Robert Holmes Factoring 19 2010-11-08 18:46
Factorization on 2^p +1 kurtulmehtap Math 25 2010-09-12 14:13
Factorization of 7,254+ dleclair NFSNET Discussion 1 2006-03-21 05:11
Factorization of 11,212+ Wacky NFSNET Discussion 1 2006-03-20 23:43
Factorization of 5,307- Jeff Gilchrist NFSNET Discussion 7 2005-02-23 19:46

All times are UTC. The time now is 03:56.


Thu Dec 2 03:56:28 UTC 2021 up 131 days, 22:25, 0 users, load averages: 1.32, 1.51, 1.42

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.