![]() |
![]() |
#1 |
Dec 2019
2 Posts |
![]()
Hello.
Here I've described the set of special functions https://mathoverflow.net/questions/3...cial-functions. It was found of Finite Fields which order is equal to Mersenne's prime order. For example for GF(31) we have: Code:
2*18 - 1*18=18 3*20 - 2*18=24 4*18 - 3*20=12 5*19 - 4*18=23 6*20 - 5*19=25 7*12 - 6*20=26 8*18 - 7*12=29 9*19 - 8*18=27 10*19 - 9*19=19 11*13 - 10*19=15 12*20 - 11*13=4 13*13 - 12*20=22 14*12 - 13*13=30 15*14 - 14*12=11 16*18 - 15*14=16 17*20 - 16*18=21 18*19 - 17*20=2 19*12 - 18*19=10 20*19 - 19*12=28 21*13 - 20*19=17 22*13 - 21*13=13 23*14 - 22*13=5 24*20 - 23*14=3 25*12 - 24*20=6 26*13 - 25*12=7 27*14 - 26*13=9 28*12 - 27*14=20 29*14 - 28*12=8 30*14 - 29*14=14 Code:
x*alpha - (x-1)*beta = y iff y*delta - (y-1)*beta = x. Could you please explain why do we have here such involution ? |
![]() |
![]() |
![]() |
#2 | |
Dec 2019
2 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Finite prime zeta? | CRGreathouse | Math | 3 | 2009-05-29 20:38 |
Order of 3 modulo a Mersenne prime | T.Rex | Math | 7 | 2009-03-13 10:46 |
On the basis of finite fields | meng_luckywolf | Math | 6 | 2007-12-13 04:21 |
Conjecture about multiplicative order of 3 modulo a Mersenne prime | T.Rex | Math | 9 | 2007-03-26 17:35 |