20210226, 02:35  #1200 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
9436_{10} Posts 
This is getting silly! (Cue Monty Python Lieutenant).
Get yourself a web site not dissimilar to "norpimeslefbehind" and do this triviallysmallbut changingeveryday maintenance there! Yourself. Can you understand that you are using this forum as a "Writeonly memory" device?! You write whatever you want, tomorrow you rewrite everything ...and nobody reads what you wrote. But the disk usage is enormous. It makes a thinking person feel the socalled Spanish shame, watching your threads. 
20210226, 15:43  #1201  
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
7·37^{2} Posts 
Quote:
See Batalov's post on the issue. Sweety has been given several helpful suggestions on how to make his posts more useful. It being a blog area allows him to change his posts at any time. Thus on post can be kept up to date. Further pdf's can be produced and attached. Then as they are updated a new pdf can be generated and changed out for the previous one. Quote:
Samuel was abusive. Some of his insults were redacted/edited/removed or otherwise cleaned up. And without getting into details, his PM's to the mods made our job of banning him obvious. Quote:


20210227, 06:34  #1202 
Nov 2016
2,819 Posts 
Riesel base 172
searched to n=2000, see the text file for the status, 0 if no (probable) prime found for this k
CK=235 k = 22, 127, 133, 184, 219 remain 
20210227, 06:37  #1203 
Nov 2016
2,819 Posts 
Riesel base 173
Code:
1,3 2,4 3,2 4,1 5,54 6,2 7,15 8,2 9,1 10,3 11,0 12,2 k = 11 remain at n=6000, see https://github.com/xayahrainie4793/S...esel%20k11.txt 
20210227, 06:39  #1204 
Nov 2016
B03_{16} Posts 
Riesel base 174
Code:
1,3251 2,1 3,1 k=1 prime given by generalized repunit prime search (cached copy) Conjecture proven Last fiddled with by sweety439 on 20210410 at 23:11 
20210227, 06:42  #1205 
Nov 2016
2,819 Posts 
Riesel base 175
Code:
1,5 2,1 3,90 4,1 5,13 6,1 7,2 8,1 9,1 10,136 11,3048 12,1 13,1 14,7 15,8 16,17 17,1 18,10 19,2 20,1 k=11 prime found by the project for k<=12 and bases <= 1024 Conjecture proven 
20210227, 06:44  #1206 
Nov 2016
2,819 Posts 
Riesel base 176
Code:
1,3 2,6 3,2 4,9 5,4 6,1 7,1 8,2 9,1 10,1 11,2 12,1 13,1 14,2 15,2 16,1 17,4 18,1 19,1 20,6 21,1 22,19 23,2 24,2 25,9 26,20 27,1 28,3 29,12 30,1 31,1 32,12 33,1 34,79 35,6 36,1 37,3 38,2 39,1 40,1 41,2 42,5 43,7 44,4 45,1 46,1 47,2 48,1 49,1 50,12 51,1 52,1 53,16 54,5 55,1 56,4 57,1 Conjecture proven 
20210227, 07:03  #1207 
Nov 2016
2,819 Posts 
Riesel base 177
searched to n=2000, see the text file for the status, 0 if no (probable) prime found for this k
CK=209 All k where k = m^2 and m = = 7 or 9 mod 16: for even n let k = m^2 and let n = 2*q; factors to: (m*177^q  1) * (m*177^q + 1) odd n: factor of 2 This includes k = 49, 81 k = 36, 64 primes given by CRUS k = 25, 161, 193, 197 remain at n=2000 
20210227, 07:19  #1208 
Nov 2016
101100000011_{2} Posts 
Riesel base 178
Code:
1,2 2,2 3,14 4,0 5,2 6,118 7,4 8,1 9,1 10,1 11,177 12,2 13,8 14,44 15,3 16,3 17,12 18,1 19,0 20,1 21,89 k = 4, 19 remain at n=2000 
20210227, 07:20  #1209 
Nov 2016
101100000011_{2} Posts 
Riesel base 179
Code:
1,19 2,2 3,16 Conjecture proven 
20210227, 07:22  #1210 
Nov 2016
2,819 Posts 
Riesel base 180
CK = 7674582 is too large, thus not run this base
(Condition 1): All k where k = m^2 and m = = 19 or 162 mod 181: for even n let k = m^2 and let n = 2*q; factors to: (m*180^q  1) * (m*180^q + 1) odd n: factor of 181 (Condition 2): All k where k = 5*m^2 and m = = 67 or 114 mod 181: even n: factor of 181 for odd n let k = 5*m^2 and let n=2*q1; factors to: [m*6^(2*q1)*5^q  1] * [m*6^(2*q1)*5^q + 1] Last fiddled with by sweety439 on 20210227 at 07:27 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
The dual Sierpinski/Riesel problem  sweety439  sweety439  14  20210215 15:58 
Semiprime and nalmost prime candidate for the k's with algebra for the Sierpinski/Riesel problem  sweety439  sweety439  11  20200923 01:42 
The reverse Sierpinski/Riesel problem  sweety439  sweety439  20  20200703 17:22 
Sierpinski/ Riesel bases 6 to 18  robert44444uk  Conjectures 'R Us  139  20071217 05:17 
Sierpinski/Riesel Base 10  rogue  Conjectures 'R Us  11  20071217 05:08 