mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2020-06-27, 07:08   #837
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

For such (k,b) pair, k is Sierpinski number base b:

Code:
k                    b                covering set
= 5, 7 mod 12        = 11 mod 12      {2, 3}
= 4, 11 mod 15       = 14 mod 15      {3, 5}
= 9, 11 mod 20       = 19 mod 20      {2, 5}
= 8, 13 mod 21       = 20 mod 21      {3, 7}
= 7, 11 mod 24       = 5 mod 24       {2, 3}
= 13, 15 mod 28      = 27 mod 28      {2, 7}
= 10, 23 mod 33      = 32 mod 33      {3, 11}
= 6, 29 mod 35       = 34 mod 35      {5, 7}
= 14, 25 mod 39      = 38 mod 39      {3, 13}
= 19, 31 mod 40      = 29 mod 40      {2, 5}
= 15, 27 mod 56      = 13 mod 56      {2, 7}
= 31, 39 mod 80      = 9 mod 80       {2, 5}
= 23, 43 mod 88      = 21 mod 88      {2, 11}
= 31, 47 mod 96      = 17 mod 96      {2, 3}
= 12, 131 mod 143    = 142 mod 143    {11, 13}
= 39, 75 mod 152     = 37 mod 152     {2, 19}
= 47, 79, 83, 181 mod 195     = 8, 122 mod 195    {3, 5, 13}
= 79, 103 mod 208    = 25 mod 208     {2, 13}
sweety439 is offline   Reply With Quote
Old 2020-06-28, 06:34   #838
sweety439
 
sweety439's Avatar
 
Nov 2016

206510 Posts
Default

https://github.com/xayahrainie4793/f...el-conjectures
sweety439 is offline   Reply With Quote
Old 2020-06-28, 06:39   #839
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

For such (k,b) pair, k is Riesel number base b:

Code:
k                    b                covering set
= 5, 7 mod 12        = 11 mod 12      {2, 3}
= 4, 11 mod 15       = 14 mod 15      {3, 5}
= 9, 11 mod 20       = 19 mod 20      {2, 5}
= 8, 13 mod 21       = 20 mod 21      {3, 7}
= 13, 17 mod 24      = 5 mod 24       {2, 3}
= 13, 15 mod 28      = 27 mod 28      {2, 7}
= 10, 23 mod 33      = 32 mod 33      {3, 11}
= 6, 29 mod 35       = 34 mod 35      {5, 7}
= 14, 25 mod 39      = 38 mod 39      {3, 13}
= 9, 21 mod 40       = 29 mod 40      {2, 5}
= 29, 41 mod 56      = 13 mod 56      {2, 7}
= 41, 49 mod 80      = 9 mod 80       {2, 5}
= 45, 65 mod 88      = 21 mod 88      {2, 11}
= 49, 65 mod 96      = 17 mod 96      {2, 3}
= 12, 131 mod 143    = 142 mod 143    {11, 13}
= 77, 113 mod 152    = 37 mod 152     {2, 19}
= 14, 112, 116, 148 mod 195   = 8, 122 mod 195    {3, 5, 13}
= 105, 129 mod 208   = 25 mod 208     {2, 13}
sweety439 is offline   Reply With Quote
Old 2020-06-30, 04:53   #840
sweety439
 
sweety439's Avatar
 
Nov 2016

5·7·59 Posts
Default

Multiples of the base (MOB) are NOT excluded from the conjectures. They are excluded from the TESTING of the conjectures if and only if (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime. Previously they were shown as being excluded from the conjectures.

That is, if k=4*b is eliminated because it is a MOB and k=4 has algebraic factors to make a full covering set, which of the two takes priority for k=4*b since it would also have algebraic factors to make a full covering set? The answer is algebraic factors take priority because k=4 cannot ever have a prime and so k=4*b must still be accounted for. SO: k=4*b has to be shown with algebraic factors because it too cannot ever have a prime.

This is certainly mathematical pickiness but to account for all k's, you can't just say a k is eliminated from the conjecture because it is a MOB and (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime. The k still remains; it's just not shown as remaining or tested because k/b should eventually (or already has) yield the same prime. But if k/b can never have a prime than you must account for k.
sweety439 is offline   Reply With Quote
Old 2020-06-30, 07:28   #841
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

Update the file of the first 3 conjectures to include these (probable) primes:

1037*12^6281-1 (see post #466)

563*12^4020+1 (see post #462)

(3356*10^4584+1)/9 (see post #471)

(846*12^1384+1)/11 (see post #655)

1057*12^690+1 and 1052*12^5715+1 (see post #665)
Attached Files
File Type: zip 1st, 2nd, and 3rd conjectures.zip (79.2 KB, 0 views)

Last fiddled with by sweety439 on 2020-06-30 at 07:45
sweety439 is offline   Reply With Quote
Old 2020-06-30, 07:44   #842
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

Also the test limit:

R12 k=1132: n=21760 (see https://mersenneforum.org/showpost.p...&postcount=664)

S10 k=1343 and 2573: n=15000 (see https://mersenneforum.org/showpost.p...&postcount=473)

S12 k = 885, 911, 976, 1041: n=25000 (see https://mersenneforum.org/showpost.p...&postcount=665)
sweety439 is offline   Reply With Quote
Old 2020-07-01, 03:59   #843
sweety439
 
sweety439's Avatar
 
Nov 2016

5·7·59 Posts
Default

Upload the zip file of the first 4 Sierpinski/Riesel conjectures, see https://github.com/xayahrainie4793/f...el-conjectures
Attached Files
File Type: zip first-4-Sierpinski-Riesel-conjectures-master.zip (127.9 KB, 1 views)
sweety439 is offline   Reply With Quote
Old 2020-07-02, 14:26   #844
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

(9216*96^3341-1)/gcd(9216-1,96-1) = (96^3343-1)/95 is (probable) prime

k=9216 eliminated from R96

Newest status of Riesel problems
sweety439 is offline   Reply With Quote
Old 2020-07-03, 01:10   #845
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

See https://github.com/xayahrainie4793/f...el-conjectures for the status of the 1st, 2nd, 3rd, and 4th Sierpinski/Riesel problems.

Code:
base: conjectured first 16 Sierpinski k
2: 78557, 157114, 271129, 271577, 314228, 322523, 327739, 482719, 542258, 543154, 575041, 603713, 628456, 645046, 655478, 903983,
3: 11047, 23789, 27221, 32549, 33141, 40247, 47969, 66869, 67747, 70381, 70667, 71367, 78283, 79141, 81241, 81663,
4: 419, 659, 794, 1466, 1676, 1769, 2246, 2414, 2609, 2636, 2651, 2981, 3176, 3734, 4514, 4889,
5: 7, 11, 31, 35, 55, 59, 79, 83, 103, 107, 127, 131, 151, 155, 175, 179,
6: 174308, 188299, 243417, 282001, 464437, 702703, 715175, 1045848, 1100966, 1128499, 1129794, 1161910, 1293662, 1434861, 1446213, 1460502,
7: 209, 1463, 3305, 3533, 3827, 5927, 7703, 9461, 9683, 10241, 10658, 10781, 12077, 12463, 12643, 14243,
8: 47, 79, 83, 181, 242, 274, 278, 376, 437, 469, 473, 571, 632, 664, 668, 766,
9: 31, 39, 111, 119, 191, 199, 271, 279, 351, 359, 431, 439, 511, 519, 591, 599,
10: 989, 1121, 3653, 3662, 8207, 9175, 9351, 9593, 9890, 10313, 11177, 11210, 12221, 13355, 14849, 16028,
11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
12: 521, 597, 1143, 1509, 2406, 2482, 3028, 3394, 4291, 4367, 4913, 5279, 6176, 6252, 6798, 7164,
13: 15, 27, 47, 71, 83, 127, 132, 139, 183, 195, 239, 251, 293, 295, 307, 351,
14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116,
15: 673029, 2105431, 2692337, 4621459,
16: 38, 194, 524, 608, 647, 719, 857, 1013, 1343, 1427, 1466, 1538, 1676, 1832, 2162, 2246,
17: 31, 47, 127, 143, 223, 239, 278, 302, 319, 335, 349, 376, 415, 431, 447, 511,
18: 398, 512, 571, 989, 1633, 1747, 1806, 2224, 2868, 2982, 3041, 3459, 4103, 4217, 4276, 4694,
19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151,
20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160,
21: 23, 43, 47, 111, 131, 199, 219, 287, 307, 339, 375, 395, 463, 483, 551, 571,
22: 2253, 4946, 6694, 8417, 13408, 13868, 16101, 17849, 19572, 24563, 27256, 29004, 30727, 35718, 38411, 40159,
23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 83, 89,
24: 30651, 66356, 77554, 84766, 176011, 199531, 260859, 268071, 295404, 372619, 427004, 534301, 539519, 547019, 583651, 606191,
25: 79, 103, 185, 287, 311, 398, 495, 519, 584, 703, 719, 727, 911, 929, 935, 1119,
26: 221, 284, 1627, 1766, 1804, 2543, 3223, 3394, 4525, 4673, 5290, 5357, 5636, 5746, 6079, 6449,
27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 181, 183, 209, 211,
28: 4554, 8293, 13687, 18996, 27319, 31058, 36452, 41761, 50084, 53823, 59217, 64526, 72849, 76588, 81982, 87291,
29: 4, 7, 11, 19, 26, 31, 34, 35, 41, 49, 55, 56, 59, 64, 71, 79,
30: 867, 9859, 10386, 10570, 11066, 13236, 15902, 16460, 18973, 21174, 22818, 25297, 25497, 26010, 28705, 28955,
31: 239, 293, 521, 1025, 1227, 1405, 1481, 1659, 1787, 2621, 2729, 3011, 3151, 3203, 3329, 3405,
32: 10, 23, 43, 56, 76, 89, 109, 122, 124, 142, 155, 175, 188, 208, 221, 241,
Code:
base: conjectured first 16 Riesel k
2: 509203, 762701, 777149, 790841, 992077, 1018406, 1106681, 1247173, 1254341, 1330207, 1330319, 1525402, 1554298, 1581682, 1715053, 1730653,
3: 12119, 20731, 21997, 28297, 30871, 33437, 35213, 36357, 51197, 51619, 53719, 54577, 61493, 62193, 62479, 65113,
4: 361, 919, 1114, 1444, 1486, 1681, 1849, 2326, 2419, 2629, 3301, 3676, 4456, 5014, 5209, 5539,
5: 13, 17, 37, 41, 61, 65, 85, 89, 109, 113, 133, 137, 157, 161, 181, 185,
6: 84687, 133946, 176602, 213410, 299144, 333845, 367256, 429127, 435940, 508122, 607935, 803676, 819925, 1059612, 1214450, 1250446,
7: 457, 1291, 3199, 3313, 3355, 3697, 4681, 5251, 5935, 6277, 9037, 11259, 12133, 13231, 13453, 14251,
8: 14, 112, 116, 148, 209, 307, 311, 343, 404, 502, 506, 538, 599, 658, 697, 701,
9: 41, 49, 74, 121, 129, 201, 209, 281, 289, 361, 369, 441, 449, 521, 529, 601,
10: 334, 1585, 1882, 3340, 3664, 7327, 8425, 9208, 10176, 10999, 12178, 12211, 13672, 15751, 15850, 17137,
11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
12: 376, 742, 1288, 1364, 2261, 2627, 3173, 3249, 4146, 4512, 5058, 5134, 6031, 6397, 6943, 7019,
13: 29, 41, 69, 85, 97, 101, 141, 153, 197, 209, 217, 253, 265, 302, 309, 321,
14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116,
15: 622403, 1346041, 2742963,
16: 100, 172, 211, 295, 625, 781, 919, 991, 1030, 1114, 1156, 1444, 1600, 1738, 1810, 1849,
17: 49, 59, 65, 86, 133, 145, 157, 161, 241, 257, 337, 353, 433, 449, 494, 521,
18: 246, 664, 723, 837, 1481, 1899, 1958, 2072, 2716, 3134, 3193, 3307, 3951, 4369, 4428, 4542,
19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151,
20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160,
21: 45, 65, 133, 153, 221, 241, 309, 329, 397, 417, 485, 489, 505, 560, 573, 593,
22: 2738, 4461, 6209, 8902, 13893, 14374, 15616, 17364, 20057, 25048, 26771, 28519, 31212, 36203, 37926, 39674,
23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
24: 32336, 69691, 109054, 124031, 135249, 140169, 177909, 196551, 213356, 215804, 217586, 326721, 335411, 360601, 386444, 406321,
25: 105, 129, 211, 313, 337, 521, 545, 729, 753, 937, 961, 1024, 1145, 1169, 1201, 1234,
26: 149, 334, 1892, 1987, 2572, 2785, 3874, 4339, 4376, 4552, 4985, 5027, 5492, 5920, 6143, 6733,
27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 173, 181, 183, 209,
28: 3769, 9078, 14472, 18211, 26534, 31843, 37237, 40976, 49299, 54608, 60002, 63741, 72064, 77373, 82767, 86506,
29: 4, 9, 11, 13, 17, 19, 21, 26, 34, 37, 41, 49, 56, 61, 64, 65,
30: 4928, 5331, 7968, 8958, 10014, 10518, 11471, 13497, 13757, 13763, 17361, 18072, 19163, 22408, 23685, 24119,
31: 145, 265, 443, 493, 519, 601, 697, 919, 1255, 1585, 2059, 2167, 2189, 2367, 2443, 2621,
32: 10, 23, 43, 56, 73, 76, 89, 109, 122, 142, 155, 175, 188, 208, 221, 241,
sweety439 is offline   Reply With Quote
Old 2020-07-03, 01:57   #846
sweety439
 
sweety439's Avatar
 
Nov 2016

5×7×59 Posts
Default

Quote:
Originally Posted by sweety439 View Post
See https://github.com/xayahrainie4793/f...el-conjectures for the status of the 1st, 2nd, 3rd, and 4th Sierpinski/Riesel problems.

Code:
base: conjectured first 16 Sierpinski k
2: 78557, 157114, 271129, 271577, 314228, 322523, 327739, 482719, 542258, 543154, 575041, 603713, 628456, 645046, 655478, 903983,
3: 11047, 23789, 27221, 32549, 33141, 40247, 47969, 66869, 67747, 70381, 70667, 71367, 78283, 79141, 81241, 81663,
4: 419, 659, 794, 1466, 1676, 1769, 2246, 2414, 2609, 2636, 2651, 2981, 3176, 3734, 4514, 4889,
5: 7, 11, 31, 35, 55, 59, 79, 83, 103, 107, 127, 131, 151, 155, 175, 179,
6: 174308, 188299, 243417, 282001, 464437, 702703, 715175, 1045848, 1100966, 1128499, 1129794, 1161910, 1293662, 1434861, 1446213, 1460502,
7: 209, 1463, 3305, 3533, 3827, 5927, 7703, 9461, 9683, 10241, 10658, 10781, 12077, 12463, 12643, 14243,
8: 47, 79, 83, 181, 242, 274, 278, 376, 437, 469, 473, 571, 632, 664, 668, 766,
9: 31, 39, 111, 119, 191, 199, 271, 279, 351, 359, 431, 439, 511, 519, 591, 599,
10: 989, 1121, 3653, 3662, 8207, 9175, 9351, 9593, 9890, 10313, 11177, 11210, 12221, 13355, 14849, 16028,
11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
12: 521, 597, 1143, 1509, 2406, 2482, 3028, 3394, 4291, 4367, 4913, 5279, 6176, 6252, 6798, 7164,
13: 15, 27, 47, 71, 83, 127, 132, 139, 183, 195, 239, 251, 293, 295, 307, 351,
14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116,
15: 673029, 2105431, 2692337, 4621459,
16: 38, 194, 524, 608, 647, 719, 857, 1013, 1343, 1427, 1466, 1538, 1676, 1832, 2162, 2246,
17: 31, 47, 127, 143, 223, 239, 278, 302, 319, 335, 349, 376, 415, 431, 447, 511,
18: 398, 512, 571, 989, 1633, 1747, 1806, 2224, 2868, 2982, 3041, 3459, 4103, 4217, 4276, 4694,
19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151,
20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160,
21: 23, 43, 47, 111, 131, 199, 219, 287, 307, 339, 375, 395, 463, 483, 551, 571,
22: 2253, 4946, 6694, 8417, 13408, 13868, 16101, 17849, 19572, 24563, 27256, 29004, 30727, 35718, 38411, 40159,
23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 83, 89,
24: 30651, 66356, 77554, 84766, 176011, 199531, 260859, 268071, 295404, 372619, 427004, 534301, 539519, 547019, 583651, 606191,
25: 79, 103, 185, 287, 311, 398, 495, 519, 584, 703, 719, 727, 911, 929, 935, 1119,
26: 221, 284, 1627, 1766, 1804, 2543, 3223, 3394, 4525, 4673, 5290, 5357, 5636, 5746, 6079, 6449,
27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 181, 183, 209, 211,
28: 4554, 8293, 13687, 18996, 27319, 31058, 36452, 41761, 50084, 53823, 59217, 64526, 72849, 76588, 81982, 87291,
29: 4, 7, 11, 19, 26, 31, 34, 35, 41, 49, 55, 56, 59, 64, 71, 79,
30: 867, 9859, 10386, 10570, 11066, 13236, 15902, 16460, 18973, 21174, 22818, 25297, 25497, 26010, 28705, 28955,
31: 239, 293, 521, 1025, 1227, 1405, 1481, 1659, 1787, 2621, 2729, 3011, 3151, 3203, 3329, 3405,
32: 10, 23, 43, 56, 76, 89, 109, 122, 124, 142, 155, 175, 188, 208, 221, 241,
Code:
base: conjectured first 16 Riesel k
2: 509203, 762701, 777149, 790841, 992077, 1018406, 1106681, 1247173, 1254341, 1330207, 1330319, 1525402, 1554298, 1581682, 1715053, 1730653,
3: 12119, 20731, 21997, 28297, 30871, 33437, 35213, 36357, 51197, 51619, 53719, 54577, 61493, 62193, 62479, 65113,
4: 361, 919, 1114, 1444, 1486, 1681, 1849, 2326, 2419, 2629, 3301, 3676, 4456, 5014, 5209, 5539,
5: 13, 17, 37, 41, 61, 65, 85, 89, 109, 113, 133, 137, 157, 161, 181, 185,
6: 84687, 133946, 176602, 213410, 299144, 333845, 367256, 429127, 435940, 508122, 607935, 803676, 819925, 1059612, 1214450, 1250446,
7: 457, 1291, 3199, 3313, 3355, 3697, 4681, 5251, 5935, 6277, 9037, 11259, 12133, 13231, 13453, 14251,
8: 14, 112, 116, 148, 209, 307, 311, 343, 404, 502, 506, 538, 599, 658, 697, 701,
9: 41, 49, 74, 121, 129, 201, 209, 281, 289, 361, 369, 441, 449, 521, 529, 601,
10: 334, 1585, 1882, 3340, 3664, 7327, 8425, 9208, 10176, 10999, 12178, 12211, 13672, 15751, 15850, 17137,
11: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
12: 376, 742, 1288, 1364, 2261, 2627, 3173, 3249, 4146, 4512, 5058, 5134, 6031, 6397, 6943, 7019,
13: 29, 41, 69, 85, 97, 101, 141, 153, 197, 209, 217, 253, 265, 302, 309, 321,
14: 4, 11, 19, 26, 34, 41, 49, 56, 64, 71, 79, 86, 94, 101, 109, 116,
15: 622403, 1346041, 2742963,
16: 100, 172, 211, 295, 625, 781, 919, 991, 1030, 1114, 1156, 1444, 1600, 1738, 1810, 1849,
17: 49, 59, 65, 86, 133, 145, 157, 161, 241, 257, 337, 353, 433, 449, 494, 521,
18: 246, 664, 723, 837, 1481, 1899, 1958, 2072, 2716, 3134, 3193, 3307, 3951, 4369, 4428, 4542,
19: 9, 11, 29, 31, 49, 51, 69, 71, 89, 91, 109, 111, 129, 131, 149, 151,
20: 8, 13, 29, 34, 50, 55, 71, 76, 92, 97, 113, 118, 134, 139, 155, 160,
21: 45, 65, 133, 153, 221, 241, 309, 329, 397, 417, 485, 489, 505, 560, 573, 593,
22: 2738, 4461, 6209, 8902, 13893, 14374, 15616, 17364, 20057, 25048, 26771, 28519, 31212, 36203, 37926, 39674,
23: 5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91,
24: 32336, 69691, 109054, 124031, 135249, 140169, 177909, 196551, 213356, 215804, 217586, 326721, 335411, 360601, 386444, 406321,
25: 105, 129, 211, 313, 337, 521, 545, 729, 753, 937, 961, 1024, 1145, 1169, 1201, 1234,
26: 149, 334, 1892, 1987, 2572, 2785, 3874, 4339, 4376, 4552, 4985, 5027, 5492, 5920, 6143, 6733,
27: 13, 15, 41, 43, 69, 71, 97, 99, 125, 127, 153, 155, 173, 181, 183, 209,
28: 3769, 9078, 14472, 18211, 26534, 31843, 37237, 40976, 49299, 54608, 60002, 63741, 72064, 77373, 82767, 86506,
29: 4, 9, 11, 13, 17, 19, 21, 26, 34, 37, 41, 49, 56, 61, 64, 65,
30: 4928, 5331, 7968, 8958, 10014, 10518, 11471, 13497, 13757, 13763, 17361, 18072, 19163, 22408, 23685, 24119,
31: 145, 265, 443, 493, 519, 601, 697, 919, 1255, 1585, 2059, 2167, 2189, 2367, 2443, 2621,
32: 10, 23, 43, 56, 73, 76, 89, 109, 122, 142, 155, 175, 188, 208, 221, 241,
Remain k's: (less than the 4th CK) (at n=3000)

R4: 1159, 1189
R5: (none)
R7: (31 k's)
R8: (none)
R9: (none)
R10: 2452
R11: (none)
R12: 1132
R13: (none)
R14: (none)
R16: (none)
R17: (none)
R18: 533, 597
R19: (none)
R20: (none)
R21: (none)
R23: (none)
R25: 181, 235
R26: (41 k's)
R27: (none)
R29: (none)
R31: (20 k's)
R32: 29
R33: 257, 339, 817, 851, 951, 1123, 1240
R34: (none)
R35: (none)
R37: 33, 81, 149
R38: 44
R39: (none)
R41: (none)
R43: 13, 55
R44: (none)
R45: 197, 257
R47: (none)
R49: 82
R50: 37, 68
R51: (none)
R53: (none)
R54: 45
R55: (none)
R56: 43
R57: 281
R59: (none)
R61: 37, 53, 100, 139, 165, 229, 313, 353, 365, 389, 421
R62: 22, 26
R64: (none)
R128: 46
R256: 191, 261, 286

S4: 1238, 1286
S5: (none)
S7: (34 k's)
S8: (none)
S9: (none)
S10: 100, 269, (1000), 1343, 2573, (2690)
S11: (none)
S12: 12, (144), 885, 911, 976, 1041, 1433, 1468
S13: (none)
S14: (none)
S16: 89
S17: 53
S18: 18, (324), 607, 761, 873, 922, 983
S19: (none)
S20: (none)
S21: (none)
S23: (none)
S25: 71, 181, 222
S26: (39 k's)
S27: 33
S29: (none)
S31: (45 k's)
S32: 4, 16
S33: 67, 203, 1207, 1317, 1439, 1531, 1563, 1597
S34: (none)
S35: (none)
S37: 37, 63, 94, 127, 134, 171
S38: 1, (38)
S39: (none)
S41: (none)
S43: 37, 56
S44: (none)
S45: 139, 217
S47: (none)
S49: (none)
S50: 1, (50)
S51: 38
S53: 4, 17, 19
S54: (none)
S55: 1, 36
S56: 46
S57: 117, 207
S59: (none)
S61: 119, 127, 155, 164, 230, 249, 262, 324, 340, 342, 353, 359, 368
S62: 1, 27
S64: (none)
S128: 16, 40, 47, 83, 88, 94, 122
S256: 89, 116, 215, 230, 281, 329, 383, 398, 407, 434, 459, 504

(k's with "()" are the k's excluded from testing (these k's are still included in the conjectures), i.e. k's that are multiples of base (b) and where (k+-1)/gcd(k+-1,b-1) (+ for Sierpinski, - for Riesel) is not prime)

Last fiddled with by sweety439 on 2020-07-04 at 15:37
sweety439 is offline   Reply With Quote
Old 2020-07-03, 03:19   #847
sweety439
 
sweety439's Avatar
 
Nov 2016

81116 Posts
Default

Quote:
Originally Posted by sweety439 View Post
Remain k's: (less than the 4th CK) (at n=3000)

R4: 1159, 1189
R5: (none)
R7: (31 k's)
R8: (none)
R9: (none)
R10: 2452
R11: (none)
R12: 1132
R13: (none)
R14: (none)
R16: (none)
R17: (none)
R18: 533, 597
R19: (none)
R20: (none)
R21: (none)
R23: (none)
R25: 181, 235
R26: (41 k's)
R27: (none)
R29: (none)
R31: (20 k's)
R32: 29
R33: 257, 339, 817, 851, 951, 1123, 1240
R34: (none)
R35: (none)
R37: 33, 81, 149
R38: 44
R39: (none)
R41: (none)
R43: 13, 55
R44: (none)
R45: 197, 257
R47: (none)
R49: 82
R50: 37, 68
R51: (none)
R53: (none)
R54: 45
R55: (none)
R56: 43
R57: 281
R59: (none)
R61: 37, 53, 100, 139, 165, 229, 313, 353, 365, 389, 421
R62: 22, 26
R64: (none)
R128: 46
R256: 191, 261, 286

S4: 1238, 1286
S5: (none)
S7: (34 k's)
S8: (none)
S9: (none)
S10: 100, 269, (1000), 1343, 2573, (2690)
S11: (none)
S12: 12, (144), 885, 911, 976, 1041, 1433, 1468
S13: (none)
S14: (none)
S16: 89
S17: 53
S18: 18, (324), 607, 761, 873, 922, 983
S19: (none)
S20: (none)
S21: (none)
S23: (none)
S25: 71, 181, 222
S26: (39 k's)
S27: 33
S29: (none)
S31: (45 k's)
S32: 4, 16
S33: 67, 203, 1207, 1317, 1439, 1531, 1563, 1597
S34: (none)
S35: (none)
S37: 37, 63, 94, 127, 134, 171
S38: 1, (38)
S39: (none)
S41: (none)
S43: 37, 56
S44: (none)
S45: 139, 217
S47: (none)
S49: (none)
S50: 1, (50)
S51: 38
S53: 4, 17, 19
S54: (none)
S55: 1, 36
S56: 46
S57: 117, 207
S59: (none)
S61: 119, 127, 155, 164, 230, 249, 262, 324, 340, 342, 353, 359, 368
S62: 1, 27
S64: (none)
S128: 16, 40, 47, 83, 88, 94, 122
S256: 89, 116, 215, 230, 281, 329, 383, 398, 407, 434, 459, 504
Reserve some 1k bases (S17, S27, S51, S56, R38, R54)
sweety439 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
The reverse Sierpinski/Riesel problem sweety439 sweety439 20 2020-07-03 17:22
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 10 2018-12-14 21:59
The dual Sierpinski/Riesel problem sweety439 sweety439 12 2017-12-01 21:56
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08

All times are UTC. The time now is 09:48.

Sun Jul 12 09:48:05 UTC 2020 up 109 days, 7:21, 0 users, load averages: 2.22, 1.75, 1.53

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.