mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Math

Reply
 
Thread Tools
Old 2008-05-27, 14:18   #1
Housemouse
 
Housemouse's Avatar
 
Feb 2008

1000002 Posts
Default Right Perfect Prime Numbers

If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?
Housemouse is offline   Reply With Quote
Old 2008-05-27, 14:36   #2
R.D. Silverman
 
R.D. Silverman's Avatar
 
Nov 2003

22×5×373 Posts
Default

Quote:
Originally Posted by Housemouse View Post
If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?
Clearly not. We don't even know whether the Mersenne primes are
infinite in number.
R.D. Silverman is offline   Reply With Quote
Old 2008-05-27, 15:45   #3
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

25658 Posts
Default

Quote:
Originally Posted by Housemouse View Post
If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?
http://www.research.att.com/~njas/sequences/A061644
R. Gerbicz is offline   Reply With Quote
Old 2008-05-27, 16:07   #4
petrw1
1976 Toyota Corona years forever!
 
petrw1's Avatar
 
"Wayne"
Nov 2006
Saskatchewan, Canada

10001000111002 Posts
Default yes

6 (7)
29 (29)
33550336 (33550337)
are Prime

496 (497)
8128 (8129)
8589869056 (8589869057)
are Composite

That is as far as I checked
petrw1 is offline   Reply With Quote
Old 2008-05-28, 11:01   #5
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

55728 Posts
Default

I trialfactored P+1 for the 44 known perfect numbers P and did ECM on 1 of them:

p: factor(s) of 2p-1*(2p-1) + 1
2: prime
3: prime
5: 7,71
7: 11,739
13: prime
17: 7,11,111556741
19: prime
31: 29,71,137,1621,5042777503
61: 2432582681,1092853292237112554142488617
89: 7
107: 7,11,67
127: 11,107,261697
521: 7,71
607: 11
1279: 72353441721527140856665601867
2203: 60449,1498429,711309659
2281: 197,557,1999,92033
3217: 11
4253: 7,53,8731,2353129,50820071
4423: 2163571
9689: 7,211,49922567
9941: 7,67,1605697,194147011
11213: 7
19937: 7,11,1129,168457
21701: 7
23209: 35603,620377
44497: 11,13259,16177141,896297147
86243: 7,29,301123,26072029
110503: 491,1493,1529761
132049: ?
216091: 4673,6920341
756839: 7
859433: 7
1257787: 11
1398269: 7,53,12713,17425081,199979189
2976221: 7,71
3021377: 7,11,49603
6972593: 7,6007,8392897,52193821
13466917: 11,45007
20996011: 1552147,114242767
24036583: 149
25964951: 7
30402457: 11
32582657: 7,11,67,34549,127541

So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*109.

Last fiddled with by ATH on 2008-05-28 at 11:08
ATH is online now   Reply With Quote
Old 2008-05-28, 11:22   #6
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

11·127 Posts
Default

Quote:
Originally Posted by ATH View Post
So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*109.
Please note that if N=2^(p-1)*(2^p-1)+1 (where Mp=2^p-1 is a Mersenne prime), then the primefactorization of N-1 is known so a quick exact primetest is possible.

Last fiddled with by R. Gerbicz on 2008-05-28 at 11:23
R. Gerbicz is offline   Reply With Quote
Old 2008-05-29, 08:25   #7
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Cambridge (GMT/BST)

2·2,861 Posts
Default

Quote:
Originally Posted by ATH View Post
I trialfactored P+1 for the 44 known perfect numbers P and did ECM on 1 of them:

p: factor(s) of 2p-1*(2p-1) + 1
2: prime
3: prime
5: 7,71
7: 11,739
13: prime
17: 7,11,111556741
19: prime
31: 29,71,137,1621,5042777503
61: 2432582681,1092853292237112554142488617
89: 7
107: 7,11,67
127: 11,107,261697
521: 7,71
607: 11
1279: 72353441721527140856665601867
2203: 60449,1498429,711309659
2281: 197,557,1999,92033
3217: 11
4253: 7,53,8731,2353129,50820071
4423: 2163571
9689: 7,211,49922567
9941: 7,67,1605697,194147011
11213: 7
19937: 7,11,1129,168457
21701: 7
23209: 35603,620377
44497: 11,13259,16177141,896297147
86243: 7,29,301123,26072029
110503: 491,1493,1529761
132049: ?
216091: 4673,6920341
756839: 7
859433: 7
1257787: 11
1398269: 7,53,12713,17425081,199979189
2976221: 7,71
3021377: 7,11,49603
6972593: 7,6007,8392897,52193821
13466917: 11,45007
20996011: 1552147,114242767
24036583: 149
25964951: 7
30402457: 11
32582657: 7,11,67,34549,127541

So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*109.
gmp-ecm doesnt think p=132049 is prp
henryzz is offline   Reply With Quote
Old 2008-05-29, 16:59   #8
philmoore
 
philmoore's Avatar
 
"Phil"
Sep 2002
Tracktown, U.S.A.

1,117 Posts
Default

Quote:
Originally Posted by henryzz View Post
gmp-ecm doesnt think p=132049 is prp
If you follow the link given at the site given by R. Gerbicz,
http://www.primepuzzles.net/puzzles/puzz_203.htm ,
you will see that PrimeForm agrees with gmp-ecm on this.
philmoore is offline   Reply With Quote
Old 2008-05-30, 00:30   #9
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

2×13×113 Posts
Default

Question solved.

I found a factor of 2p-1*(2p-1) + 1 for p=132049 with gmp-ecm:
194528547122653

So of the 44 known perfect numbers P=2p-1*(2p-1), P+1 is only prime for p=2,3,13 and 19.

Last fiddled with by ATH on 2008-05-30 at 00:31
ATH is online now   Reply With Quote
Old 2008-09-16, 23:19   #10
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

2·13·113 Posts
Default

Updated list:

Code:
p:		factor(s) of 2p-1*(2p-1) + 1
------------------------------------------------------------------
2:		prime
3:		prime
5:		7 , 71
7:		11 , 739
13:		prime
17:		7 , 11 , 111556741
19:		prime
31:		29 , 71 , 137 , 1621 , 5042777503
61:		2432582681 , 1092853292237112554142488617
89:		7
107:		7 , 11 , 67
127:		11 , 107 , 261697
521:		7 , 71
607:		11
1279:		72353441721527140856665601867
2203:		60449 , 1498429 , 711309659, 1418050069
2281:		197 , 557 , 1999 , 92033
3217:		11
4253:		7 , 53 , 8731 , 2353129 , 50820071
4423:		2163571
9689:		7 , 211 , 49922567
9941:		7 , 67 , 1605697 , 194147011
11213:		7
19937:		7 , 11 , 1129 , 168457
21701:		7
23209:		35603 , 620377
44497:		11 , 13259 , 16177141 , 896297147
86243:		7 , 29 , 301123 , 26072029
110503:		491 , 1493 , 1529761
132049:		194528547122653
216091:		4673 , 6920341
756839:		7
859433:		7
1257787:	11
1398269:	7 , 53 , 12713 , 17425081 , 199979189
2976221:	7 , 71
3021377:	7 , 11 , 49603
6972593:	7 , 6007 , 8392897 , 52193821
13466917:	11 , 45007
20996011:	1552147 , 114242767
24036583:	149
25964951:	7
30402457:	11
32582657:	7 , 11 , 67 , 34549 , 127541
37156667:	7 , 11 , 44753 , 202577 , 1282451377
42643801:	3593 , 7089208037
43112609:	7 , 211 , 70121 , 71647 , 1846524311
57885161:	7 , 22127627
74207281:	No factor < 6*1012
77232917:	7 , 11 , 11587
82589933:	7 , 67 , 599 , 7347113 , 14416229
So of the now 51 known perfect numbers P=2p-1*(2p-1), P+1 is only still prime for p=2,3,13 and 19, and status unknown for p=74207281.

Last fiddled with by ATH on 2020-01-30 at 03:13
ATH is online now   Reply With Quote
Old 2016-01-23, 09:38   #11
JeppeSN
 
JeppeSN's Avatar
 
"Jeppe"
Jan 2016
Denmark

5·31 Posts
Default

Can we extend this?

p: factor(s) of 2p-1*(2p-1) + 1
57885161: 7
74207281: ?

/JeppeSN
JeppeSN is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Is this new formula for Perfect Numbers useful? mahbel Miscellaneous Math 20 2017-03-01 22:41
How to generate base10 representation of Mersenne-prime perfect numbers? James Heinrich Miscellaneous Math 10 2012-03-08 07:20
Odd Perfect Numbers davar55 Miscellaneous Math 16 2011-01-29 01:53
Perfect Numbers MajUSAFRet Math 3 2003-12-13 03:55
Odd Perfect Numbers Zeta-Flux Math 1 2003-05-28 19:41

All times are UTC. The time now is 12:38.

Thu Sep 24 12:38:55 UTC 2020 up 14 days, 9:49, 1 user, load averages: 1.72, 1.69, 1.74

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.