mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Math

Reply
 
Thread Tools
Old 2019-12-05, 11:15   #1
toktarev
 
Dec 2019

102 Posts
Default Finite fields of Mersenne prime order

Hello.

Here I've described the set of special functions https://mathoverflow.net/questions/3...cial-functions.

It was found of Finite Fields which order is equal to Mersenne's prime order.

For example for GF(31) we have:


Code:
2*18 - 1*18=18
3*20 - 2*18=24
4*18 - 3*20=12
5*19 - 4*18=23
6*20 - 5*19=25
7*12 - 6*20=26
8*18 - 7*12=29
9*19 - 8*18=27
10*19 - 9*19=19
11*13 - 10*19=15
12*20 - 11*13=4
13*13 - 12*20=22
14*12 - 13*13=30
15*14 - 14*12=11
16*18 - 15*14=16
17*20 - 16*18=21
18*19 - 17*20=2
19*12 - 18*19=10
20*19 - 19*12=28
21*13 - 20*19=17
22*13 - 21*13=13
23*14 - 22*13=5
24*20 - 23*14=3
25*12 - 24*20=6
26*13 - 25*12=7
27*14 - 26*13=9
28*12 - 27*14=20
29*14 - 28*12=8
30*14 - 29*14=14
As you can see we have involution here, it means:

Code:
x*alpha - (x-1)*beta = y
iff
y*delta - (y-1)*beta  = x.
This involution works for any Finite Field of Mersenne's prime order.

Could you please explain why do we have here such involution ?
toktarev is offline   Reply With Quote
Old 2019-12-05, 14:43   #2
toktarev
 
Dec 2019

216 Posts
Default

Quote:
x*alpha - (x-1)*beta = y
iff
y*delta - (y-1)*gamma = x.
Fixed
toktarev is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Finite prime zeta? CRGreathouse Math 3 2009-05-29 20:38
Order of 3 modulo a Mersenne prime T.Rex Math 7 2009-03-13 10:46
On the basis of finite fields meng_luckywolf Math 6 2007-12-13 04:21
Conjecture about multiplicative order of 3 modulo a Mersenne prime T.Rex Math 9 2007-03-26 17:35

All times are UTC. The time now is 01:02.


Sat Dec 10 01:02:12 UTC 2022 up 113 days, 22:30, 0 users, load averages: 1.03, 0.90, 0.91

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔