mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > enzocreti

Reply
 
Thread Tools
Old 2020-03-03, 10:13   #1
enzocreti
 
Mar 2018

10338 Posts
Default Integers congruent to last two decimal digits mod 23

N belongs to Z, that is N can be every positive, negative or 0 integer.
let be m the last two digits of N




so for exampe if N=9345, m=45
is it possible to find with a program the numbers N congruent to m mod 23?
Is it possible to extend this to other primes p different from 23?

Last fiddled with by enzocreti on 2020-03-03 at 10:14
enzocreti is offline   Reply With Quote
Old 2020-03-03, 18:38   #2
Dylan14
 
Dylan14's Avatar
 
"Dylan"
Mar 2017

599 Posts
Default

Quote:
Originally Posted by enzocreti View Post
is it possible to find with a program the numbers N congruent to m mod 23?
Yes. I wrote this Python script to determine said numbers:
Code:
#program to check if a number is congruent to its last 2 decimal digits mod p,
#where p is a prime

N = -10000
p = 23
while(N<=10000):
    stringint = str(N)
    finaldigits = stringint[-2:]
    finaldigitsint = int(finaldigits)
    if N%p == finaldigitsint:
        print(N)
        N += 1
    else:
        N += 1
Up to |N| = 10000 I get the following numbers:
Code:
-9918
-9822
-9703
-9607
-9511
-9415
-9319
-9200
-9104
-9008
-8912
-8816
-8720
-8601
-8505
-8409
-8313
-8217
-8121
-8002
-7906
-7810
-7714
-7618
-7522
-7403
-7307
-7211
-7115
-7019
-6900
-6804
-6708
-6612
-6516
-6420
-6301
-6205
-6109
-6013
-5917
-5821
-5702
-5606
-5510
-5414
-5318
-5222
-5103
-5007
-4911
-4815
-4719
-4600
-4504
-4408
-4312
-4216
-4120
-4001
-3905
-3809
-3713
-3617
-3521
-3402
-3306
-3210
-3114
-3018
-2922
-2803
-2707
-2611
-2515
-2419
-2300
-2204
-2108
-2012
-1916
-1820
-1701
-1605
-1509
-1413
-1317
-1221
-1102
-1006
-910
-814
-718
-622
-503
-407
-311
-215
-119
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
If you have a Python interpreter you can run this with a different value of p to find numbers that are congruent to their last 2 digits mod p.
That being said, it may be worth learning a coding language so you don't have to ask such questions. It's one thing for someone else to do the code, it's another to do it yourself.
Dylan14 is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Twin Primes with 128 Decimal Digits tuckerkao Miscellaneous Math 2 2020-02-16 06:23
cubes congruent to 2^n (mod 215) enzocreti enzocreti 1 2020-02-14 16:56
N congruent to 2^2^n mod(2^2^n+1) enzocreti enzocreti 2 2020-02-12 15:14
Congruent to 10^n mod 41 enzocreti enzocreti 0 2020-01-09 11:56
((my) mod n ) congruent to n-1 smslca Math 2 2012-01-29 11:30

All times are UTC. The time now is 13:41.


Fri Jun 9 13:41:32 UTC 2023 up 295 days, 11:10, 0 users, load averages: 0.84, 0.94, 0.98

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔