mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Prime Gap Searches

Reply
 
Thread Tools
Old 2021-12-02, 18:17   #1
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default Long ranges of gaps larger than a given value

Take a range of integers p1 to p(n+1) within which there are primes p1,p2,p3...p(n+1), with gaps between these primes of g1,g2,g3...gn

Take an integer to represent the smallest gap in the set g1,g2,g3..gn. Let this smallest gap be x

What is the smallest p1 for which x=2,4,6,8,... for each n?

If x=4, n=3, then the p1 is 43, as 43,47,53,59 is the first instance of three gaps 4,6,6 that are of size 4 or more

The table below shows values at n 1..20 in column 1, then for various x in the other columns. The table values are p1.

For x = 1,2 the p1 are 2 and 3 respectively.

For clarity I also attach a photo of the table.

Sorry if this duplicates other's work, but I have not seen any lists like this in OEIS.

Code:
	4	6	8	10	12	14	16	18	20	30	50	100	200
1	7	23	89	113	113	113	523	523	887	1327	19609	370261	20831323
2	19	47	199	199	199	1831	2161	2161	3947	24251	413299	72546143	15318488071
3	43	241	683	773	3947	7351	7351	7351	18593	69557	3021173	1284352451	
4	73	241	683	7043	10181	23371	63913	66191	112403	668243	14784911	24964088161	
5	73	523	683	13477	23087	47161	68281	68281	250501	2352289	107282507	82504446809	
6	349	677	1789	13477	23371	47161	231109	231109	783877	4720943	837406403	438290428309	
7	349	677	13469	13477	23371	339341	339341	539899	2352247	30097883	2547259079		
8	349	677	13469	13477	23371	339841	339841	539899	2722561	64740587	7623725903		
9	349	2861	13469	13477	23371	611561	876853	5556769	5556769	130925771	47787139219		
10	349	10733	13469	115153	257503	611561	6463309	6463309	7063817	1075978859	96622630009		
11	349	10733	62687	202409	406883	611561	7063817	7063817	7063817	1415929063	177013585123		
12	661	13421	62687	303731	406883	876853	7591729	12199571	61501877	2695118249	1324527983897		
13	661	13421	62687	303731	729979	876853	15022753	15022753	148486951	3731002741			
14	661	13421	62687	406817	729979	9355501	15022753	15022753	254259631	7780262561			
15	661	13421	200597	406817	729979	12877433	20917291	20917291	562725353	33705791429			
16	661	13421	200597	406817	729979	12877433	72733109	89085481	1143902897	46318910903			
17	661	13421	568441	913639	4656469	12877433	134798647	180820951	1462517893	103947089669			
18	661	13421	568441	913639	4656469	12877433	195503851	195503851	2158109033	103947089669			
19	661	13421	568441	970447	4656469	12877433	232253071	381906059	4527970103	184722051989			
20	8629	13421	568441	970447	8962013	112843903	232253071	381906059	9156493673	184722051989
Attached Thumbnails
Click image for larger version

Name:	table.JPG
Views:	48
Size:	151.0 KB
ID:	26172  

Last fiddled with by robert44444uk on 2021-12-04 at 13:31
robert44444uk is offline   Reply With Quote
Old 2021-12-03, 12:06   #2
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default

The first instance of 7 consecutive 100+ gaps is 5183073661943 with gaps 116,130,114,158,286,102,102

The first instance of 3 consecutive 200+ gaps is provided by 20222645954633 with gaps of 204,216,218

Last fiddled with by robert44444uk on 2021-12-03 at 12:09
robert44444uk is offline   Reply With Quote
Old 2021-12-04, 08:10   #3
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

111111000012 Posts
Default

The first instance of 13 and 14 consecutive 50+ gaps is at 3057601284499 where subsequent gaps are 60, 54, 58, 50, 100, 90, 62, 156, 124, 60, 60, 68, 76 and 86
robert44444uk is offline   Reply With Quote
Old 2021-12-04, 10:47   #4
mart_r
 
mart_r's Avatar
 
Dec 2008
you know...around...

7·101 Posts
Default

A nice variation. The idea of e.g. consecutive gaps with certain merit value went through my head before, but I never got around to calculate specific numbers. I think that would fall out as a corollary of your table.
I would suggest continuing this search. You also see, for example, the gaps in twin primes depicted by long runs of the same value in the column x=4.
mart_r is offline   Reply With Quote
Old 2021-12-04, 14:38   #5
Dr Sardonicus
 
Dr Sardonicus's Avatar
 
Feb 2017
Nowhere

2×2,687 Posts
Default

I note that for a given x, the sequence of least primes with all g's \ge x for increasing n (down a given column of the table) is monotone increasing; likewise for a given n and increasing lower bound x on gap size (along a given row).

The repeated values along the rows and columns are interesting - there are "jumps" in the gap size for given n, and in the number of consecutive primes with given minimum gap size.

For n = 1, the gap size has to be even to for (p, p + g1) to be an "admissible" pair. For n+1 > 2 consecutive primes, the gap values are further constrained by the n + 1-tuple (p, p + g1, p + g1 + g2, ...) being "admissible." In particular, if "x" is not divisible by 3, the triple (p, p + x, p + 2*x) is not admissible (one of them is divisible by 3 for p > 3).

I suppose one could look at n-tuples of gaps (g1, g2,... gn) with all g's \ge x, (but not much larger) for which (p, p + g1, p + g1 + g2, ... p + g1 + ... + gn) is admissible.

One can probably use the Hardy-Littlewood conjectural asymptotic formula to estimate how large p has to be for there to be a decent chance of the tuple to consist entirely of primes; I don't know about the condition that they be consecutive primes.
Dr Sardonicus is online now   Reply With Quote
Old 2021-12-05, 22:11   #6
Bobby Jacobs
 
Bobby Jacobs's Avatar
 
May 2018

5·72 Posts
Default

This is very cool!
Bobby Jacobs is offline   Reply With Quote
Old 2021-12-06, 10:16   #7
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

7E116 Posts
Default

I'm taking all gaps up to 50 in case anyone is interested in extending other ranges. 60 looks a soft target, as are all 0mod30 cases

What I find gratifying about this search is that the higher you go, you do find new records. The small gap cases are very easy to extend.

For example - 4

Code:
20	8629
21	8629
22	8629
23	8629
24	13399
25	13399
26	13399
27	14629
28	14629
29	24421
30	24421
31	24421
32	24421
33	24421
34	24421
35	24421
36	24421
37	24421
38	24421
39	24421
40	24421
41	24421
42	62299
43	62299
44	62299
45	62299
46	62299
47	62299
48	62299
49	62299
50	62299
51	62299
52	62299
53	62299
54	187909
55	187909
56	187909
57	187909
58	187909
59	187909
60	187909
61	187909
62	187909
63	187909
64	187909
65	187909
66	187909
67	187909
68	187909
69	187909
70	187909
71	187909
robert44444uk is offline   Reply With Quote
Old 2021-12-13, 16:24   #8
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default

Quote:
Originally Posted by mart_r View Post
A nice variation. The idea of e.g. consecutive gaps with certain merit value went through my head before, but I never got around to calculate specific numbers. I think that would fall out as a corollary of your table.
Just out of interest, I calculated the first few ranges of consecutive gaps, each with merit >1. The starting primes are not on OEIS

Code:
Min	merit:	1	Run	of	merits:	1	Initial	prime:	2	Following	gaps:	1	Merits:	1.44																												
Min	merit:	1	Run	of	merits:	2	Initial	prime:	2	Following	gaps:	1	2	Merits:	1.44	1.820478453																										
Min	merit:	1	Run	of	merits:	3	Initial	prime:	2	Following	gaps:	1	2	2	Merits:	1.44	1.820478453	1.242669869																								
Min	merit:	1	Run	of	merits:	4	Initial	prime:	2	Following	gaps:	1	2	2	4	Merits:	1.44	1.820478453	1.242669869	2.055593369																						
Min	merit:	1	Run	of	merits:	5	Initial	prime:	683	Following	gaps:	8	10	8	10	8	Merits:	1.225772819	1.529487021	1.220906581	1.523494836	1.216200763																				
Min	merit:	1	Run	of	merits:	6	Initial	prime:	1789	Following	gaps:	12	10	12	8	16	14	Merits:	1.602261949	1.3340275	1.599651392	1.065496216	2.129750371	1.861375897																		
Min	merit:	1	Run	of	merits:	7	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487																
Min	merit:	1	Run	of	merits:	8	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	10	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487	1.05092845														
Min	merit:	1	Run	of	merits:	9	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	10	14	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487	1.05092845	1.47118591												
Min	merit:	1	Run	of	merits:	10	Initial	prime:	611561	Following	gaps:	26	16	18	20	16	14	22	14	22	24	Merits:	1.951399644	1.200857488	1.350962021	1.501065596	1.20084953	1.050741276	1.651162026	1.050736635	1.651154732	1.801254846										
Min	merit:	1	Run	of	merits:	11	Initial	prime:	611561	Following	gaps:	26	16	18	20	16	14	22	14	22	24	38	Merits:	1.951399644	1.200857488	1.350962021	1.501065596	1.20084953	1.050741276	1.651162026	1.050736635	1.651154732	1.801254846	2.851978442								
Min	merit:	1	Run	of	merits:	12	Initial	prime:	876853	Following	gaps:	18	22	20	16	18	24	32	24	16	14	16	18	Merits:	1.315395755	1.607703511	1.461545967	1.169234825	1.315387424	1.753847268	2.338458347	1.753839084	1.169223717	1.023069389	1.169220795	1.315371641						
Min	merit:	1	Run	of	merits:	13	Initial	prime:	876853	Following	gaps:	18	22	20	16	18	24	32	24	16	14	16	18	18	Merits:	1.315395755	1.607703511	1.461545967	1.169234825	1.315387424	1.753847268	2.338458347	1.753839084	1.169223717	1.023069389	1.169220795	1.315371641	1.315369668				
Min	merit:	1	Run	of	merits:	14	Initial	prime:	15022753	Following	gaps:	18	22	18	20	22	20	40	24	26	28	36	32	22	56	Merits:	1.089253658	1.33130993	1.089253482	1.210281559	1.331309608	1.210281355	2.420562514	1.452337275	1.573365229	1.694393146	2.178505227	1.93644881	1.331308385	3.388784681		
Min	merit:	1	Run	of	merits:	15	Initial	prime:	20917291	Following	gaps:	22	18	18	18	42	32	18	24	34	36	44	22	24	18	42	Merits:	1.305166519	1.067863449	1.067863395	1.06786334	2.491681	1.898423393	1.067863061	1.423817343	2.017074431	2.135725662	2.610331099	1.305165387	1.423816696	1.06786245	2.491678922
robert44444uk is offline   Reply With Quote
Old 2021-12-14, 17:33   #9
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default

Quote:
Originally Posted by robert44444uk View Post
Just out of interest, I calculated the first few ranges of consecutive gaps, each with merit >1. The starting primes are not on OEIS

Code:
Min	merit:	1	Run	of	merits:	1	Initial	prime:	2	Following	gaps:	1	Merits:	1.44																												
Min	merit:	1	Run	of	merits:	2	Initial	prime:	2	Following	gaps:	1	2	Merits:	1.44	1.820478453																										
Min	merit:	1	Run	of	merits:	3	Initial	prime:	2	Following	gaps:	1	2	2	Merits:	1.44	1.820478453	1.242669869																								
Min	merit:	1	Run	of	merits:	4	Initial	prime:	2	Following	gaps:	1	2	2	4	Merits:	1.44	1.820478453	1.242669869	2.055593369																						
Min	merit:	1	Run	of	merits:	5	Initial	prime:	683	Following	gaps:	8	10	8	10	8	Merits:	1.225772819	1.529487021	1.220906581	1.523494836	1.216200763																				
Min	merit:	1	Run	of	merits:	6	Initial	prime:	1789	Following	gaps:	12	10	12	8	16	14	Merits:	1.602261949	1.3340275	1.599651392	1.065496216	2.129750371	1.861375897																		
Min	merit:	1	Run	of	merits:	7	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487																
Min	merit:	1	Run	of	merits:	8	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	10	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487	1.05092845														
Min	merit:	1	Run	of	merits:	9	Initial	prime:	13477	Following	gaps:	10	12	14	10	14	16	14	10	14	Merits:	1.051664069	1.261898449	1.472077185	1.05136911	1.471802284	1.681876797	1.471459487	1.05092845	1.47118591												
Min	merit:	1	Run	of	merits:	10	Initial	prime:	611561	Following	gaps:	26	16	18	20	16	14	22	14	22	24	Merits:	1.951399644	1.200857488	1.350962021	1.501065596	1.20084953	1.050741276	1.651162026	1.050736635	1.651154732	1.801254846										
Min	merit:	1	Run	of	merits:	11	Initial	prime:	611561	Following	gaps:	26	16	18	20	16	14	22	14	22	24	38	Merits:	1.951399644	1.200857488	1.350962021	1.501065596	1.20084953	1.050741276	1.651162026	1.050736635	1.651154732	1.801254846	2.851978442								
Min	merit:	1	Run	of	merits:	12	Initial	prime:	876853	Following	gaps:	18	22	20	16	18	24	32	24	16	14	16	18	Merits:	1.315395755	1.607703511	1.461545967	1.169234825	1.315387424	1.753847268	2.338458347	1.753839084	1.169223717	1.023069389	1.169220795	1.315371641						
Min	merit:	1	Run	of	merits:	13	Initial	prime:	876853	Following	gaps:	18	22	20	16	18	24	32	24	16	14	16	18	18	Merits:	1.315395755	1.607703511	1.461545967	1.169234825	1.315387424	1.753847268	2.338458347	1.753839084	1.169223717	1.023069389	1.169220795	1.315371641	1.315369668				
Min	merit:	1	Run	of	merits:	14	Initial	prime:	15022753	Following	gaps:	18	22	18	20	22	20	40	24	26	28	36	32	22	56	Merits:	1.089253658	1.33130993	1.089253482	1.210281559	1.331309608	1.210281355	2.420562514	1.452337275	1.573365229	1.694393146	2.178505227	1.93644881	1.331308385	3.388784681		
Min	merit:	1	Run	of	merits:	15	Initial	prime:	20917291	Following	gaps:	22	18	18	18	42	32	18	24	34	36	44	22	24	18	42	Merits:	1.305166519	1.067863449	1.067863395	1.06786334	2.491681	1.898423393	1.067863061	1.423817343	2.017074431	2.135725662	2.610331099	1.305165387	1.423816696	1.06786245	2.491678922
Checked up to p=1001200549 and a second run of 15 found but no run of 16 yet.

Min merit: 1 Run of merits: 15 Initial prime: 34398523 Following gaps: 40 56 40 18 26 36 18 22 20 18 34 56 22 24 24 Merits: 2.30500730414805 3.22701000956899 2.3050069334542 1.03725305054945 1.49825436117103 2.07450594818822 1.03725291153983 1.2677535203211 1.15250315781684 1.03725280728285 1.95925524356651 3.22700845266168 1.26775320175876 1.38300344185791 1.3830033862545

Because the median merit following a prime is only about 0.7 merit - i.e. 0.7*g/ln(p) - there may be a case for saying that arbitrarily long runs of gaps with merit >1 do not occur. Interest to hear from others.

Last fiddled with by robert44444uk on 2021-12-14 at 17:39
robert44444uk is offline   Reply With Quote
Old 2021-12-16, 09:02   #10
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default

I found the first instance of two consecutive 300 gaps.

2 ||| 1362810282139 1362810282439 1362810282781 || 300 342

In the search I discovered 6 such. The largest gap following the 300 pair found was:

2 ||| 1724709287369 1724709287671 1724709287999 || 302 328 80
robert44444uk is offline   Reply With Quote
Old 2021-12-20, 14:54   #11
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

2,017 Posts
Default

some findings about strings of minimum merits:

Merit >2

Code:
Min	merit:	2	Run	of	merits:	2	Initial	prime:	199	Following	gaps:	12	12							Merits:	2.267014728	2.242211901						
Min	merit:	2	Run	of	merits:	3	Initial	prime:	7351	Following	gaps:	18	24	18						Merits:	2.021883147	2.695103818	2.020590063					
Min	merit:	2	Run	of	merits:	4	Initial	prime:	648449	Following	gaps:	32	28	54	44					Merits:	2.391211347	2.092302213	4.03514125	3.287872413				
Min	merit:	2	Run	of	merits:	5	Initial	prime:	2352323	Following	gaps:	34	30	50	30	40				Merits:	2.317512986	2.044862385	3.408101012	2.044857645	2.726474489			
Min	merit:	2	Run	of	merits:	6	Initial	prime:	30097967	Following	gaps:	54	42	54	66	42	60			Merits:	3.135894622	2.439028896	3.135894041	3.832758984	2.439028134	3.484325623		
Min	merit:	2	Run	of	merits:	7	Initial	prime:	335739713	Following	gaps:	40	84	42	44	40	56	40		Merits:	2.03750573	4.278762006	2.139380976	2.241256246	2.037505665	2.852507913	2.037505635	
Min	merit:	2	Run	of	merits:	8	Initial	prime:	1065726007	Following	gaps:	42	48	52	54	48	50	76	50	Merits:	2.02050115	2.309144167	2.501572842	2.597787176	2.30914415	2.405358485	3.656144889	2.405358471
Merit >3

Code:
Min	merit:	3	Run	of	merits:	2	Initial	prime:	38461	Following	gaps:	40	42				Merits:	3.788811632	3.977860556			
Min	merit:	3	Run	of	merits:	3	Initial	prime:	740749	Following	gaps:	52	48	42			Merits:	3.847458022	3.551481267	3.107531211		
Min	merit:	3	Run	of	merits:	4	Initial	prime:	14784977	Following	gaps:	66	50	52	60		Merits:	3.997790871	3.028628629	3.149773129	3.634352836	
Min	merit:	3	Run	of	merits:	5	Initial	prime:	754473523	Following	gaps:	126	88	62	84	66	Merits:	6.163921998	4.304961361	3.033040941	4.109281259	3.228720971
Merit >4

Code:
Min	merit:	4	Run	of	merits:	2	Initial	prime:	413299	Following	gaps:	54	58			Merits:	4.175711922	4.484978606		
Min	merit:	4	Run	of	merits:	3	Initial	prime:	112219777	Following	gaps:	78	106	114		Merits:	4.208034635	5.718610957	6.150203923	
Min	merit:	4	Run	of	merits:	4	Initial	prime:	5289589577	Following	gaps:	180	92	90	100	Merits:	8.039660002	4.10915955	4.019829992	4.466477765
Min merit >5

Code:
Min	merit:	5	Run	of	merits:	2	Initial	prime:	10938023	Following	gaps:	102	96		Merits:	6.293287056	5.923090292	
Min	merit:	5	Run	of	merits:	3	Initial	prime:	1440754039	Following	gaps:	122	130	108	Merits:	5.785162115	6.164516983	5.12129101
robert44444uk is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Gaps between maximal prime gaps Bobby Jacobs Prime Gap Searches 52 2020-08-22 15:20
Using long long's in Mingw with 32-bit Windows XP grandpascorpion Programming 7 2009-10-04 12:13
I think it's gonna be a long, long time panic Hardware 9 2009-09-11 05:11
Gaps and more gaps on <300 site gd_barnes Riesel Prime Search 11 2007-06-27 04:12
2003 Oct 31: P-1: a set of 17 larger exponents GP2 Completed Missions 2 2003-11-03 15:34

All times are UTC. The time now is 13:34.


Thu Jan 27 13:34:41 UTC 2022 up 188 days, 8:03, 1 user, load averages: 1.02, 1.23, 1.31

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔