mersenneforum.org  

Go Back   mersenneforum.org > Fun Stuff > Lounge

Reply
 
Thread Tools
Old 2004-09-13, 21:08   #1
philmoore
 
philmoore's Avatar
 
"Phil"
Sep 2002
Tracktown, U.S.A.

25·5·7 Posts
Default M971 factored

Congratulations to the factorer of M971, which had been the smallest Mersenne number without a known (prime) factor. Does anyone have any information about this? The original number had 293 digits, and a 53-digit factor was sufficient to crack it. The smallest known unfactored Mersenne distinction now goes to M1061 at 320 digits. See the update at:
http://www.mersenne.org/ecmm.htm
philmoore is offline   Reply With Quote
Old 2004-09-13, 21:14   #2
Uncwilly
6809 > 6502
 
Uncwilly's Avatar
 
"""""""""""""""""""
Aug 2003
101ร—103 Posts

22×7×389 Posts
Default

It says that factorization is complete on it too.
Uncwilly is offline   Reply With Quote
Old 2004-09-13, 21:52   #3
akruppa
 
akruppa's Avatar
 
"Nancy"
Aug 2002
Alexandria

2,467 Posts
Default

Very nice indeed! Congrats to the unknown factorer!

Any info on what the sigma of the lucky curve was?

Alex
akruppa is offline   Reply With Quote
Old 2004-09-14, 07:43   #4
xilman
Bamboozled!
 
xilman's Avatar
 
"๐’‰บ๐’ŒŒ๐’‡ท๐’†ท๐’€ญ"
May 2003
Down not across

101101100010102 Posts
Default

Quote:
Originally Posted by akruppa
Very nice indeed! Congrats to the unknown factorer!

Any info on what the sigma of the lucky curve was?

Alex
I and a bunch of others (including Alex, I now see) received this mail from George Woltman overnight. It answers the questions asked so far in this thread.

Cc: David Symcox [Removed email address - Mod]
Subject: Fwd: M971 has a factor: 23917104973173909566916321016011885041962486321502513
Date: Mon, 13 Sep 2004 16:18:20 -0400
Hello all,

Congratulations to David for finding a 53-digit factor of M971 !!
Proving the cofactor prime is left as an exercise to the reader....

...

> [Tue Sep 07 23:37:21 2004]
> ECM found a factor in curve #1356, stage #2
> Sigma=7917157863480469, B1=44000000, B2=4290000000.
> M971 has a factor: 23917104973173909566916321016011885041962486321502513
> Cofactor is a probable prime!
Paul

Last fiddled with by garo on 2004-09-14 at 20:05
xilman is offline   Reply With Quote
Old 2004-09-14, 08:03   #5
akruppa
 
akruppa's Avatar
 
"Nancy"
Aug 2002
Alexandria

46438 Posts
Default

Oh, the email went to my old address which I don't read as often anymore (swamped by spam).

The group order, thanks to the Magma calculator is 2^4 * 3 * 29 * 31^2 * 41 * 53 * 107 * 21589 * 62773 * 140419 * 229781 * 238729 * 2286601 * 3221525051, computed with

Code:
FindGroupOrder2 := function (p, s)
   K := GF(p);
   v := K ! (4*s);
   u := K ! (s^2-5);
   x := u^3;
   b := 4*x*v;
   a := (v-u)^3*(3*u+v);
   A := a/b-2;
   x := x/v^3;
   b := x^3 + A*x^2 + x;
   E := EllipticCurve([0,b*A,0,b^2,0]);
   return FactoredOrder(E);
end function;
p:=23917104973173909566916321016011885041962486321502513;
s:=7917157863480469;
FindGroupOrder2(p,s);
Unfortunately, the factor is just a little too small for Brent's ECM Top Ten.

Alex

Last fiddled with by akruppa on 2004-09-14 at 08:05
akruppa is offline   Reply With Quote
Old 2004-09-14, 20:18   #6
Uncwilly
6809 > 6502
 
Uncwilly's Avatar
 
"""""""""""""""""""
Aug 2003
101ร—103 Posts

22·7·389 Posts
Default

Quote:
Originally Posted by no one in particular
M971 has a factor: 23917104973173909566916321016011885041962486321502513
Cofactor is a probable prime!

Using Dario's applet, the cofactor is indeed prime. That means that M971 is the product of 2 primes.
Uncwilly is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
RSA-210 factored ryanp Factoring 6 2013-11-26 09:33
Factored vs. Completely factored aketilander Factoring 4 2012-08-08 18:09
F22 factored! unconnected Factoring 31 2010-06-26 04:07
F33 is factored !! Raman Factoring 4 2010-04-01 13:57
Nice Result! M971 R.D. Silverman Factoring 53 2004-10-02 08:54

All times are UTC. The time now is 12:16.


Thu Feb 2 12:16:51 UTC 2023 up 168 days, 9:45, 1 user, load averages: 0.96, 0.81, 0.81

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

โ‰  ยฑ โˆ“ รท ร— ยท โˆ’ โˆš โ€ฐ โŠ— โŠ• โŠ– โŠ˜ โŠ™ โ‰ค โ‰ฅ โ‰ฆ โ‰ง โ‰จ โ‰ฉ โ‰บ โ‰ป โ‰ผ โ‰ฝ โŠ โŠ โŠ‘ โŠ’ ยฒ ยณ ยฐ
โˆ  โˆŸ ยฐ โ‰… ~ โ€– โŸ‚ โซ›
โ‰ก โ‰œ โ‰ˆ โˆ โˆž โ‰ช โ‰ซ โŒŠโŒ‹ โŒˆโŒ‰ โˆ˜ โˆ โˆ โˆ‘ โˆง โˆจ โˆฉ โˆช โจ€ โŠ• โŠ— ๐–• ๐–– ๐–— โŠฒ โŠณ
โˆ… โˆ– โˆ โ†ฆ โ†ฃ โˆฉ โˆช โŠ† โŠ‚ โŠ„ โŠŠ โŠ‡ โŠƒ โŠ… โŠ‹ โŠ– โˆˆ โˆ‰ โˆ‹ โˆŒ โ„• โ„ค โ„š โ„ โ„‚ โ„ต โ„ถ โ„ท โ„ธ ๐“Ÿ
ยฌ โˆจ โˆง โŠ• โ†’ โ† โ‡’ โ‡ โ‡” โˆ€ โˆƒ โˆ„ โˆด โˆต โŠค โŠฅ โŠข โŠจ โซค โŠฃ โ€ฆ โ‹ฏ โ‹ฎ โ‹ฐ โ‹ฑ
โˆซ โˆฌ โˆญ โˆฎ โˆฏ โˆฐ โˆ‡ โˆ† ฮด โˆ‚ โ„ฑ โ„’ โ„“
๐›ข๐›ผ ๐›ฃ๐›ฝ ๐›ค๐›พ ๐›ฅ๐›ฟ ๐›ฆ๐œ€๐œ– ๐›ง๐œ ๐›จ๐œ‚ ๐›ฉ๐œƒ๐œ— ๐›ช๐œ„ ๐›ซ๐œ… ๐›ฌ๐œ† ๐›ญ๐œ‡ ๐›ฎ๐œˆ ๐›ฏ๐œ‰ ๐›ฐ๐œŠ ๐›ฑ๐œ‹ ๐›ฒ๐œŒ ๐›ด๐œŽ๐œ ๐›ต๐œ ๐›ถ๐œ ๐›ท๐œ™๐œ‘ ๐›ธ๐œ’ ๐›น๐œ“ ๐›บ๐œ”