![]() |
![]() |
#1 |
Sep 2002
Database er0rr
2×3×599 Posts |
![]() ![]() In May of 2001, Andy Steward, provided the following N^2-1 factorisation of 4^n-3 to the Yahoo group primeform: Expo Len N^2-1 % 2 2 100.00% 3 2 100.00% 5 4 100.00% 6 4 100.00% 7 5 100.00% 10 7 100.00% 11 7 100.00% 12 8 100.00% 47 29 100.00% 58 35 100.00% 61 37 100.00% 75 46 100.00% 87 53 100.00% 133 81 100.00% 168 102 100.00% 226 137 100.00% 347 209 100.00% 425 256 100.00% 868 523 62.54% 1977 1,191 21.72% 2815 1,695 29.69% 3378 2,034 13.72% 4385 2,641 15.65% The sequence continues: 4^5286-3 2^7057-3[*] 4^7200-3 4^8230-3 4^8340-3 4^13175-3 4^17226-3 4^18276-3 4^25237-3 4^33211-3 4^58463-3 4^59662-3 4^94555-3 4^120502-3 4^177473-3 4^197017-3 [*] was proven by Preda Mihailescu with his Cycloprove program in 1999. Please can you provide updated N^2-1 factoriztion percentages for these numbers -- a lot work has been done on the Cunningham tables since 2001. Note: N-1=4[4^(n-1)-1] and N+1=2[2^(2n-1)-1]. |
![]() |
![]() |
![]() |
#2 |
Sep 2002
Database er0rr
2·3·599 Posts |
![]()
http://perta.fizyka.amu.edu.pl/pnq/ is a good source, but I don't know if Wojciech Florek is making the best of the resources such as Cunningham tables, factoring programs and primailty proving programs. If you has the time you could help him
![]() (No longer unanswered ![]() |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Status | Primeinator | Operation Billion Digits | 5 | 2011-12-06 02:35 |
62 bit status | 1997rj7 | Lone Mersenne Hunters | 27 | 2008-09-29 13:52 |
OBD Status | Uncwilly | Operation Billion Digits | 22 | 2005-10-25 14:05 |
1-2M LLR status | paulunderwood | 3*2^n-1 Search | 2 | 2005-03-13 17:03 |
Status of 26.0M - 26.5M | 1997rj7 | Lone Mersenne Hunters | 25 | 2004-06-18 16:46 |