![]() |
![]() |
#1 |
May 2017
ITALY
52·19 Posts |
![]()
hey @CRGreathouse here is your log y
if N=p*q & p+q-4 mod 8 = 0 & (q-p+2)/4=y is odd [but ...] M=(3*N-1)/8 special formula Z=(2*M-3*y+1)/24 Example N=507 3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A , sqrt(y^2)=2*sqrt(a^2)+1 , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , sqrt(a^2)=2*sqrt(b^2)+1 , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1 , b=1 || b=-1 q=2*(3*x+1-(x-y+1))+1 https://www.youtube.com/watch?v=8FB9GYkIT3E |
![]() |
![]() |
![]() |
#2 | |
May 2017
ITALY
52·19 Posts |
![]() Quote:
red - correction |
|
![]() |
![]() |
![]() |
#3 |
May 2017
ITALY
52·19 Posts |
![]()
I fixed the bug
it should now be correct Example N=507 3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A , sqrt(y^2)=sqrt((2*a-1)^2) , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , sqrt(a^2)=sqrt((2*b-1)^2) , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1 , b=1 || b=-1 Example N=595 3*(((2*223-3*y+1)/24)+3*x*(x+1)/2)+1=A , sqrt(y^2)=sqrt((2*a-1)^2) , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , sqrt(a^2)=sqrt((2*b-1)^2) , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1 , b=1 || b=-1 |
![]() |
![]() |
![]() |
#4 |
May 2017
ITALY
52×19 Posts |
![]()
if I am not wrong this is the demonstration
((2*(3*N-1)/8-3*y+1)/24)=x*(x+1)/2-(y+1)/2*(y-1)/2/2 , p*q=N , q=2*(3*x+1-(x-y+1))+1 , p=2*(3*x+1-(x-y+1))+1-(4*y-2) , p*q=N=(8*M+1)/3 , (p-2)*(q+2)=(8*(M-3*y)+1)/3 , (2*M-3*y+1)=(2*(M-3*y)+3*y+1) , 3*(((2*(3*N-1)/8-3*y+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1-3*(y+1)/2*(y-1)/2/2 please feedback Last fiddled with by Alberico Lepore on 2020-11-09 at 05:51 |
![]() |
![]() |
![]() |
#5 |
May 2017
ITALY
1110110112 Posts |
![]()
then
not to test at any level of log y log y must be overcome example 3*(((2*250-3*(1-y)+1)/24)+3*x*(x+1)/2)+1=A , sqrt((1-y)^2)=sqrt((2*a-1)^2) , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , sqrt(a^2)=sqrt((2*b-1)^2) , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=B , b=1 in the example i used 250 which has an even y |
![]() |
![]() |
![]() |
#6 |
May 2017
ITALY
47510 Posts |
![]()
another type of implementation based on the same principle
is this [if I have not made mistakes] 3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A , y=2*[(-1)^((y+1)/2-1)]*a+(-1)^[(-1)^((y+1)/2)] , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , [(-1)^((y+1)/2-1)]*a=2*[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+(-1)^[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2]] , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=C , [(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b=2*[(-1)^[[[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+1]/2-1]]*c+(-1)^[(-1)^[[[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+1]/2]] , 3*(((2*C-3*c+1)/24)+3*x*(x+1)/2)+1=C , c=1 which of the two is better in your opinion? UPDATE: There are some mistakes tomorrow I will try to update Last fiddled with by Alberico Lepore on 2020-11-11 at 17:16 Reason: UPDATE |
![]() |
![]() |
![]() |
#7 |
May 2017
ITALY
7338 Posts |
![]()
this is the best logarithmic implementation I could think of.
I leave the implementation to you expert programmers pure logarithm N=507 3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A , 190=3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2 , 3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B , A+3*a*(a-1)/2=12*x*(x+1)/2+1 , 3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=C , B+3*b*(b-1)/2=12*x*(x+1)/2+1 , 3*(((2*C-3*c+1)/24)+3*x*(x+1)/2)+1=C , c=1 ,A,B,C,x,y>0 Last fiddled with by Alberico Lepore on 2020-11-14 at 13:37 Reason: ,A,B,C,x,y>0 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Alert Sound | Cricage | Information & Answers | 3 | 2016-01-21 16:49 |
Moment of Silence for John Todd | R.D. Silverman | Information & Answers | 1 | 2007-06-26 18:24 |
This might sound a little morbid, but | Unregistered | PrimeNet | 7 | 2006-10-23 15:48 |
prime95 sound | pacionet | Software | 9 | 2006-01-22 21:04 |
What sound | JuanTutors | Software | 8 | 2004-10-04 06:33 |