![]() |
![]() |
#1 |
May 2004
New York City
23×232 Posts |
![]()
What is the smallest positive integer n such that
both 2^n and 3^n are each singly pandigital, i.e. contain all ten digits at least once? What about doubly pandigital, i.e. contain each of all ten digits at least twice? Care to try for three? (Based on the "Multiply Pandigital" thread.) |
![]() |
![]() |
![]() |
#2 |
Romulan Interpreter
Jun 2011
Thailand
52·7·53 Posts |
![]()
You imagine people have nothing to do and waste their time with trifles?
![]() Code:
(14:08:12) gp > pandig(n)=v=[0,0,0,0,0,0,0,0,0,0];while(n>0,v[n%10+1]++;n\=10);return(vecsort(v)[1]) %4 = (n)->v=[0,0,0,0,0,0,0,0,0,0];while(n>0,v[n%10+1]++;n\=10);return(vecsort(v)[1]) (14:09:32) gp > n=15; until(b>0&&d>0,print(n++", "a=2^n", "b=pandig(a)" : "c=3^n", "d=pandig(c))) 16, 65536, 0 : 43046721, 0 17, 131072, 0 : 129140163, 0 18, 262144, 0 : 387420489, 0 19, 524288, 0 : 1162261467, 0 20, 1048576, 0 : 3486784401, 0 21, 2097152, 0 : 10460353203, 0 22, 4194304, 0 : 31381059609, 0 23, 8388608, 0 : 94143178827, 0 24, 16777216, 0 : 282429536481, 0 25, 33554432, 0 : 847288609443, 0 26, 67108864, 0 : 2541865828329, 0 27, 134217728, 0 : 7625597484987, 0 28, 268435456, 0 : 22876792454961, 0 29, 536870912, 0 : 68630377364883, 0 30, 1073741824, 0 : 205891132094649, 0 31, 2147483648, 0 : 617673396283947, 0 32, 4294967296, 0 : 1853020188851841, 0 33, 8589934592, 0 : 5559060566555523, 0 34, 17179869184, 0 : 16677181699666569, 0 35, 34359738368, 0 : 50031545098999707, 0 36, 68719476736, 0 : 150094635296999121, 0 37, 137438953472, 0 : 450283905890997363, 0 38, 274877906944, 0 : 1350851717672992089, 0 39, 549755813888, 0 : 4052555153018976267, 1 40, 1099511627776, 0 : 12157665459056928801, 0 41, 2199023255552, 0 : 36472996377170786403, 0 42, 4398046511104, 0 : 109418989131512359209, 0 43, 8796093022208, 0 : 328256967394537077627, 0 44, 17592186044416, 0 : 984770902183611232881, 0 45, 35184372088832, 0 : 2954312706550833698643, 1 46, 70368744177664, 0 : 8862938119652501095929, 0 47, 140737488355328, 0 : 26588814358957503287787, 1 48, 281474976710656, 0 : 79766443076872509863361, 1 49, 562949953421312, 0 : 239299329230617529590083, 0 50, 1125899906842624, 0 : 717897987691852588770249, 0 51, 2251799813685248, 0 : 2153693963075557766310747, 0 52, 4503599627370496, 0 : 6461081889226673298932241, 0 53, 9007199254740992, 0 : 19383245667680019896796723, 1 54, 18014398509481984, 0 : 58149737003040059690390169, 0 55, 36028797018963968, 0 : 174449211009120179071170507, 0 56, 72057594037927936, 0 : 523347633027360537213511521, 0 57, 144115188075855872, 0 : 1570042899082081611640534563, 1 58, 288230376151711744, 0 : 4710128697246244834921603689, 0 59, 576460752303423488, 0 : 14130386091738734504764811067, 0 60, 1152921504606846976, 0 : 42391158275216203514294433201, 1 61, 2305843009213693952, 0 : 127173474825648610542883299603, 2 62, 4611686018427387904, 0 : 381520424476945831628649898809, 1 63, 9223372036854775808, 0 : 1144561273430837494885949696427, 1 64, 18446744073709551616, 0 : 3433683820292512484657849089281, 1 65, 36893488147419103232, 0 : 10301051460877537453973547267843, 1 66, 73786976294838206464, 0 : 30903154382632612361920641803529, 0 67, 147573952589676412928, 0 : 92709463147897837085761925410587, 2 68, 295147905179352825856, 1 : 278128389443693511257285776231761, 0 69, 590295810358705651712, 0 : 834385168331080533771857328695283, 1 70, 1180591620717411303424, 1 : 2503155504993241601315571986085849, 1 (14:10:07) gp > n=70; until(b>1&&d>1,print(n++", "a=2^n", "b=pandig(a)" : "c=3^n", "d=pandig(c))) 71, 2361183241434822606848, 0 : 7509466514979724803946715958257547, 1 72, 4722366482869645213696, 0 : 22528399544939174411840147874772641, 1 73, 9444732965739290427392, 0 : 67585198634817523235520443624317923, 1 74, 18889465931478580854784, 0 : 202755595904452569706561330872953769, 1 76, 75557863725914323419136, 0 : 1824800363140073127359051977856583921, 2 77, 151115727451828646838272, 0 : 5474401089420219382077155933569751763, 2 78, 302231454903657293676544, 0 : 16423203268260658146231467800709255289, 2 79, 604462909807314587353088, 1 : 49269609804781974438694403402127765867, 1 80, 1208925819614629174706176, 0 : 147808829414345923316083210206383297601, 1 ... <snip: uninteresting (0,0) lines were skipped, due to size limit of the post> ... 82, 4835703278458516698824704, 1 : 1330279464729113309844748891857449678409, 1 83, 9671406556917033397649408, 0 : 3990838394187339929534246675572349035227, 1 84, 19342813113834066795298816, 1 : 11972515182562019788602740026717047105681, 0 85, 38685626227668133590597632, 0 : 35917545547686059365808220080151141317043, 2 86, 77371252455336267181195264, 0 : 107752636643058178097424660240453423951129, 2 87, 154742504910672534362390528, 1 : 323257909929174534292273980721360271853387, 1 88, 309485009821345068724781056, 2 : 969773729787523602876821942164080815560161, 2 (14:15:13) gp > n=88; until(b>2&&d>2,print(n++", "a=2^n", "b=pandig(a)" : "c=3^n", "d=pandig(c))) 89, 618970019642690137449562112, 1 : 2909321189362570808630465826492242446680483, 1 90, 1237940039285380274899124224, 0 : 8727963568087712425891397479476727340041449, 2 ... 92, 4951760157141521099596496896, 0 : 78551672112789411833022577315290546060373041, 2 93, 9903520314283042199192993792, 0 : 235655016338368235499067731945871638181119123, 2 94, 19807040628566084398385987584, 1 : 706965049015104706497203195837614914543357369, 1 95, 39614081257132168796771975168, 1 : 2120895147045314119491609587512844743630072107, 2 96, 79228162514264337593543950336, 1 : 6362685441135942358474828762538534230890216321, 2 97, 158456325028528675187087900672, 1 : 19088056323407827075424486287615602692670648963, 2 98, 316912650057057350374175801344, 1 : 57264168970223481226273458862846808078011946889, 2 99, 633825300114114700748351602688, 0 : 171792506910670443678820376588540424234035840667, 2 100, 1267650600228229401496703205376, 1 : 515377520732011331036461129765621272702107522001, 0 101, 2535301200456458802993406410752, 1 : 1546132562196033993109383389296863818106322566003, 0 102, 5070602400912917605986812821504, 0 : 4638397686588101979328150167890591454318967698009, 1 103, 10141204801825835211973625643008, 1 : 13915193059764305937984450503671774362956903094027, 1 104, 20282409603651670423947251286016, 2 : 41745579179292917813953351511015323088870709282081, 0 105, 40564819207303340847894502572032, 1 : 125236737537878753441860054533045969266612127846243, 2 106, 81129638414606681695789005144064, 1 : 375710212613636260325580163599137907799836383538729, 0 107, 162259276829213363391578010288128, 0 : 1127130637840908780976740490797413723399509150616187, 2 108, 324518553658426726783156020576256, 0 : 3381391913522726342930221472392241170198527451848561, 2 109, 649037107316853453566312041152512, 1 : 10144175740568179028790664417176723510595582355545683, 3 110, 1298074214633706907132624082305024, 1 : 30432527221704537086371993251530170531786747066637049, 2 111, 2596148429267413814265248164610048, 1 : 91297581665113611259115979754590511595360241199911147, 1 112, 5192296858534827628530496329220096, 1 : 273892744995340833777347939263771534786080723599733441, 2 113, 10384593717069655257060992658440192, 2 : 821678234986022501332043817791314604358242170799200323, 2 114, 20769187434139310514121985316880384, 2 : 2465034704958067503996131453373943813074726512397600969, 2 115, 41538374868278621028243970633760768, 1 : 7395104114874202511988394360121831439224179537192802907, 1 116, 83076749736557242056487941267521536, 2 : 22185312344622607535965183080365494317672538611578408721, 2 117, 166153499473114484112975882535043072, 2 : 66555937033867822607895549241096482953017615834735226163, 4 118, 332306998946228968225951765070086144, 2 : 199667811101603467823686647723289448859052847504205678489, 3 119, 664613997892457936451903530140172288, 3 : 599003433304810403471059943169868346577158542512617035467, 2 120, 1329227995784915872903807060280344576, 2 : 1797010299914431210413179829509605039731475627537851106401, 2 121, 2658455991569831745807614120560689152, 1 : 5391030899743293631239539488528815119194426882613553319203, 1 122, 5316911983139663491615228241121378304, 1 : 16173092699229880893718618465586445357583280647840659957609, 4 123, 10633823966279326983230456482242756608, 1 : 48519278097689642681155855396759336072749841943521979872827, 2 124, 21267647932558653966460912964485513216, 1 : 145557834293068928043467566190278008218249525830565939618481, 3 125, 42535295865117307932921825928971026432, 2 : 436673502879206784130402698570834024654748577491697818855443, 3 126, 85070591730234615865843651857942052864, 2 : 1310020508637620352391208095712502073964245732475093456566329, 2 127, 170141183460469231731687303715884105728, 1 : 3930061525912861057173624287137506221892737197425280369698987, 2 128, 340282366920938463463374607431768211456, 1 : 11790184577738583171520872861412518665678211592275841109096961, 2 129, 680564733841876926926749214863536422912, 1 : 35370553733215749514562618584237555997034634776827523327290883, 3 130, 1361129467683753853853498429727072845824, 1 : 106111661199647248543687855752712667991103904330482569981872649, 4 131, 2722258935367507707706996859454145691648, 2 : 318334983598941745631063567258138003973311712991447709945617947, 2 132, 5444517870735015415413993718908291383296, 1 : 955004950796825236893190701774414011919935138974343129836853841, 3 133, 10889035741470030830827987437816582766592, 3 : 2865014852390475710679572105323242035759805416923029389510561523, 4 (14:15:34) gp > Last fiddled with by LaurV on 2013-01-07 at 07:28 Reason: syntax highlighting :P |
![]() |
![]() |
![]() |
#3 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
22·2,333 Posts |
![]()
He must have been right!
|
![]() |
![]() |
![]() |
#4 |
May 2004
New York City
23·232 Posts |
![]()
Certainly don't want to trifle with this quick (very nice btw) solution to
the 1-ply 2-ply 3-ply pandigital problem. I was originally going to ask not for 1, 2, and 3-ply but for 100-, 200-, and 300-ply pandigitals, but now I see the problems scale easily that far. I might have said 2^n-1 and 3^n-2 and all prime, but that's going a bit too far, don't you think? Last fiddled with by davar55 on 2013-01-07 at 21:03 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Multiply By Drawing Lines | petrw1 | Math | 2 | 2014-05-20 06:13 |
Sequences using nine-digit pandigital numbers as start | ChristianB | Aliquot Sequences | 16 | 2014-05-16 06:56 |
Multiply Pandigital | davar55 | Puzzles | 18 | 2010-12-22 22:07 |
Multiply | mgb | Lounge | 0 | 2008-07-28 12:54 |
Critical bug in Gnu MP FFT-multiply code | ET_ | Lounge | 3 | 2004-03-11 16:24 |