![]() |
![]() |
#1 |
Feb 2018
5·19 Posts |
![]()
For all Collatz series, starting with any odd n, always meets the equation:
(2^M)- P = n*(3^STEPS) With M,P functions of n. JM M |
![]() |
![]() |
![]() |
#2 |
Aug 2006
5,987 Posts |
![]()
Does this tell us anything more than "the number of steps is a function of n"?
|
![]() |
![]() |
![]() |
#3 |
Feb 2018
5·19 Posts |
![]()
Conjetura de Collatz-Ulam. (Lothar Collatz. Stanislaw Ulam)
Definición. Se define la función productoPotencia, , como la suma de productos de D, en binario, por una secuencia de potencias de tres. Se ignoran los bit cero. proPOT(D) = SUM( (3^I)*(2^J) ). Ejemplo. D=151 =128+16+4+2+1. proPOT(151) =SUMA[(1,3,9,27,81)*(128,16,4,2,1)] =347. Collatz-Ulam es la t-serie con la ec.de paso: 3*e+1 = (2^g)*e' , donde N=0, eFinal=1, y eInicial el valor inicial. Ec. equivalente a la función de Syracuse. Syracuse(e)=e'. Ejemplo con eInicial =7 e: 7,11,17,13,5,1. g: 1,1,2,3,4. M=11. D= 1+2+4+16+128 = 151. Ec. de intervalo: (2^11) = proPOT(151) + (7)*(3^5) Siendo: proPOT(151)= SUMA[(1,3,9,27,81)*(128,16,4,2,1)] =347. #pasos =bits(D) =5 Teorema Para la serie de Collatz se obtiene: (2^Collatz_M(eInicial)) =proPOT(D) + (eInicial)*(3^bits(D)) y la conjetura equivale a afirmar que para todo n, existe un d tal que: 2^Collatz_M(n) -proPOT(D) = n*3bits(D) Algunas soluciones M D n 3^bits(D) (2^ 5) = proPOT( 3) + 3 * (3^ 2) (2^11) = proPOT( 151)+ 7 * (3^ 5) (2^13) = proPOT( 605)+ 9 * (3^ 6) ---------------------------------------------------------------------- Share Knowledge. JM M |
![]() |
![]() |
![]() |
#4 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
274516 Posts |
![]() |
![]() |
![]() |
![]() |
#5 |
Feb 2018
5·19 Posts |
![]()
Mire, Sr. Sergev Batalov. Replique a mis post ó no los conteste.
Pero yo no entro aquí para las tonterias. De nadie. JM Montolio |
![]() |
![]() |
![]() |
#6 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
100111010001012 Posts |
![]()
Why do you post nonsense then?
You should not take nonsense from anyone. Including yourself. And what, are you denying other people the right to not take nonsense from anyone? |
![]() |
![]() |
![]() |
#7 |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
100111010001012 Posts |
![]()
The water drip observation was aimed at all of your odd dozen last threads, which are peppered all over the forum all of a sudden and all of which are
"New" "Useful" etc. Even the forum software recognizes you as a spammer. Please learn some modesty and learn to listen to others. |
![]() |
![]() |
![]() |
#8 |
Feb 2018
9510 Posts |
![]()
If one post is NOT NEW, please tell about it,
and can be deleted. No problem. If one post is NOT USEFUL, same thing. No problem on corrections. Delete, move. But with respect. JM M |
![]() |
![]() |
![]() |
#9 | |
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2
32·1,117 Posts |
![]() Quote:
... Also can you kindly explain how someone can "delete with respect"? What I am describing is free speech. P.S. Btw, in case you are not understanding it - everyone with nicknames in red is a moderator. You are talking to a moderator. A moderator who had enough dealing with spam. |
|
![]() |
![]() |
![]() |
#10 |
Feb 2018
5×19 Posts |
![]()
Reciba usted mis mejores grifos.
JMMA |
![]() |
![]() |
![]() |
#11 |
Feb 2018
23 Posts |
![]()
Nothing new.
If you apply the Condensed Collatz function ... or rearranged: multiply by or all you do is rearrange the whole thing. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Collatz Conjecture Proof | Steve One | Miscellaneous Math | 21 | 2018-03-08 08:18 |
this thread is for a Collatz conjecture again | MattcAnderson | MattcAnderson | 16 | 2018-02-28 19:58 |
A new aproach to C. Erdös-Straus. 4/n=... | JM Montolio A | Miscellaneous Math | 6 | 2018-02-27 20:20 |
Collatz conjecture | MattcAnderson | MattcAnderson | 4 | 2017-03-12 07:39 |
Related to Collatz conjecture | nibble4bits | Math | 1 | 2007-08-04 07:09 |