mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > Alberico Lepore

Reply
 
Thread Tools
Old 2020-11-07, 14:19   #1
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

22·112 Posts
Default the sound of silence

hey @CRGreathouse here is your log y

if N=p*q & p+q-4 mod 8 = 0 & (q-p+2)/4=y is odd [but ...]


M=(3*N-1)/8

special formula

Z=(2*M-3*y+1)/24



Example

N=507


3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
sqrt(y^2)=2*sqrt(a^2)+1
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
sqrt(a^2)=2*sqrt(b^2)+1
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1
,
b=1 || b=-1



q=2*(3*x+1-(x-y+1))+1


https://www.youtube.com/watch?v=8FB9GYkIT3E
Alberico Lepore is online now   Reply With Quote
Old 2020-11-07, 14:59   #2
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

48410 Posts
Default

Quote:
Originally Posted by Alberico Lepore View Post
hey @CRGreathouse here is your log y

if N=p*q & p+q-4 mod 8 = 0 & (q-p+2)/4=y is odd [but ...]


M=(3*N-1)/8

special formula

Z=(2*M-3*y+1)/24



Example

N=507


3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
sqrt(y^2)=2*sqrt(a^2)+-1
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
sqrt(a^2)=2*sqrt(b^2)+-1
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1
,
b=1 || b=-1



q=2*(3*x+1-(x-y+1))+1


https://www.youtube.com/watch?v=8FB9GYkIT3E
there is a small mistake that makes it all in vain

red - correction
Alberico Lepore is online now   Reply With Quote
Old 2020-11-08, 06:00   #3
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

7448 Posts
Default

I fixed the bug

it should now be correct

Example

N=507


3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
sqrt(y^2)=sqrt((2*a-1)^2)
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
sqrt(a^2)=sqrt((2*b-1)^2)
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1
,
b=1 || b=-1




Example

N=595


3*(((2*223-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
sqrt(y^2)=sqrt((2*a-1)^2)
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
sqrt(a^2)=sqrt((2*b-1)^2)
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1
,
b=1 || b=-1
Alberico Lepore is online now   Reply With Quote
Old 2020-11-08, 15:49   #4
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

22·112 Posts
Default

if I am not wrong this is the demonstration

((2*(3*N-1)/8-3*y+1)/24)=x*(x+1)/2-(y+1)/2*(y-1)/2/2
,
p*q=N
,
q=2*(3*x+1-(x-y+1))+1
,
p=2*(3*x+1-(x-y+1))+1-(4*y-2)
,
p*q=N=(8*M+1)/3
,
(p-2)*(q+2)=(8*(M-3*y)+1)/3
,
(2*M-3*y+1)=(2*(M-3*y)+3*y+1)
,
3*(((2*(3*N-1)/8-3*y+1)/24)+3*x*(x+1)/2)+1=12*x*(x+1)/2+1-3*(y+1)/2*(y-1)/2/2




please feedback

Last fiddled with by Alberico Lepore on 2020-11-09 at 05:51
Alberico Lepore is online now   Reply With Quote
Old 2020-11-11, 11:08   #5
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

1111001002 Posts
Default

then
not to test at any level of log y
log y must be overcome

example

3*(((2*250-3*(1-y)+1)/24)+3*x*(x+1)/2)+1=A
,
sqrt((1-y)^2)=sqrt((2*a-1)^2)
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
sqrt(a^2)=sqrt((2*b-1)^2)
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=B
,
b=1


in the example i used 250 which has an even y
Alberico Lepore is online now   Reply With Quote
Old 2020-11-11, 15:26   #6
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

22×112 Posts
Default

another type of implementation based on the same principle
is this [if I have not made mistakes]



3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
y=2*[(-1)^((y+1)/2-1)]*a+(-1)^[(-1)^((y+1)/2)]
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
[(-1)^((y+1)/2-1)]*a=2*[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+(-1)^[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2]]
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=C
,
[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b=2*[(-1)^[[[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+1]/2-1]]*c+(-1)^[(-1)^[[[(-1)^[[[(-1)^((y+1)/2-1)]*a+1]/2-1]]*b+1]/2]]
,
3*(((2*C-3*c+1)/24)+3*x*(x+1)/2)+1=C
,
c=1



which of the two is better in your opinion?



UPDATE:

There are some mistakes
tomorrow I will try to update

Last fiddled with by Alberico Lepore on 2020-11-11 at 17:16 Reason: UPDATE
Alberico Lepore is online now   Reply With Quote
Old 2020-11-12, 09:59   #7
Alberico Lepore
 
Alberico Lepore's Avatar
 
May 2017
ITALY

22·112 Posts
Default

this is the best logarithmic implementation I could think of.
I leave the implementation to you expert programmers


pure logarithm

N=507


3*(((2*190-3*y+1)/24)+3*x*(x+1)/2)+1=A
,
190=3*x*(x+1)/2-3*y*(y-1)/2+(3*x+1)*(3*x+2)/2
,
3*(((2*A-3*a+1)/24)+3*x*(x+1)/2)+1=B
,
A+3*a*(a-1)/2=12*x*(x+1)/2+1
,
3*(((2*B-3*b+1)/24)+3*x*(x+1)/2)+1=C
,
B+3*b*(b-1)/2=12*x*(x+1)/2+1
,
3*(((2*C-3*c+1)/24)+3*x*(x+1)/2)+1=C
,
c=1
,A,B,C,x,y>0

Last fiddled with by Alberico Lepore on 2020-11-14 at 13:37 Reason: ,A,B,C,x,y>0
Alberico Lepore is online now   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Alert Sound Cricage Information & Answers 3 2016-01-21 16:49
Moment of Silence for John Todd R.D. Silverman Information & Answers 1 2007-06-26 18:24
This might sound a little morbid, but Unregistered PrimeNet 7 2006-10-23 15:48
prime95 sound pacionet Software 9 2006-01-22 21:04
What sound JuanTutors Software 8 2004-10-04 06:33

All times are UTC. The time now is 09:08.

Mon May 10 09:08:03 UTC 2021 up 32 days, 3:48, 0 users, load averages: 1.75, 2.06, 2.01

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.