mersenneforum.org what is the best primality software?
 Register FAQ Search Today's Posts Mark Forums Read

 2022-09-13, 05:39 #1 bbb120   "特朗普trump" Feb 2019 朱晓丹没人草 22×3×11 Posts what is the best primality software? I only know mathematica or maple to test primality on a giving number ! but mathematica is too large !
2022-09-13, 13:06   #2
rogue

"Mark"
Apr 2003
Between here and the

152328 Posts

Quote:
 Originally Posted by bbb120 I only know mathematica or maple to test primality on a giving number ! but mathematica is too large !
That depends upon the numbers you want to test. Please provide more details.

2022-09-14, 00:29   #3
bbb120

"特朗普trump"
Feb 2019

22×3×11 Posts

Quote:
 Originally Posted by rogue That depends upon the numbers you want to test. Please provide more details.
for any integer to test primality ,not for special type of integer!

 2022-09-14, 01:29 #4 VBCurtis     "Curtis" Feb 2005 Riverside, CA 15AA16 Posts Pick a program (say PFGW) that does a prp test, then once you find a probable prime use ECPP software to prove it prime.
2022-09-14, 02:42   #5
bbb120

"特朗普trump"
Feb 2019

22×3×11 Posts

Quote:
 Originally Posted by VBCurtis Pick a program (say PFGW) that does a prp test, then once you find a probable prime use ECPP software to prove it prime.
maybe I can use random miller rabin to "prove" it prime.
does PFGW support random miller rabin base to "prove"?

2022-09-14, 03:21   #6
bbb120

"特朗普trump"
Feb 2019

22·3·11 Posts

Quote:
 Originally Posted by VBCurtis Pick a program (say PFGW) that does a prp test, then once you find a probable prime use ECPP software to prove it prime.

but in pfgwdoc.txt
-------------------------------------
-b Change base for prp-testing.
This switch requires and argument
Some numbers will be prp, even if it isn't a prime. You may want to
try several bases.
Base should be between 2 and 255
Example: pfgw -b7
-------------------------------------
2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867

this 397-digits composite pass all base(2 to 306)miller rabin test,
so this software should not give a limition to the choosing of base!!!

2887148238050771212671429597130393991977609459279722700926516024197432\
3037991527331163289831446392259419778031109293496555784189494417409338\
0561511397999942154241693397290542371100275104208013496673175515285922\
6962916775325475044445856101949404200039904432116776619949629539250452\
6987193290703735640322737012784538991261203092448414947289768854060249\
76768122077071687938121709811322297802059565867

Last fiddled with by bbb120 on 2022-09-14 at 03:22 Reason: improve

 2022-09-14, 04:11 #7 paulunderwood     Sep 2002 Database er0rr 434810 Posts Code: ./pfgw64 -tc -q2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 PFGW Version 4.0.1.64BIT.20191203.x86_Dev [GWNUM 29.8] Primality testing 2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Factored: 10475096971045985224204423648945582453962513105348124302901261662540724079869634880456766224539126779375883658239075983560088580357347 2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 is composite (0.0115s+0.0011s) There are no known composite numbers that pass PFGW's Fermat+Lucas which can be achieved by running the combined N+1/N-1 tests with the switch -tc. Last fiddled with by paulunderwood on 2022-09-14 at 04:13
2022-09-14, 05:35   #8
bbb120

"特朗普trump"
Feb 2019

2048 Posts

Quote:
 Originally Posted by paulunderwood Code: ./pfgw64 -tc -q2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 PFGW Version 4.0.1.64BIT.20191203.x86_Dev [GWNUM 29.8] Primality testing 2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Factored: 10475096971045985224204423648945582453962513105348124302901261662540724079869634880456766224539126779375883658239075983560088580357347 2887148238050771212671429597130393991977609459279722700926516024197432303799152733116328983144639225941977803110929349655578418949441740933805615113979999421542416933972905423711002751042080134966731755152859226962916775325475044445856101949404200039904432116776619949629539250452698719329070373564032273701278453899126120309244841494728976885406024976768122077071687938121709811322297802059565867 is composite (0.0115s+0.0011s) There are no known composite numbers that pass PFGW's Fermat+Lucas which can be achieved by running the combined N+1/N-1 tests with the switch -tc.
how pfgw know it is a composite number with -tc option?

2022-09-14, 05:52   #9
VBCurtis

"Curtis"
Feb 2005
Riverside, CA

2·47·59 Posts

Quote:
 Originally Posted by bbb120 how pfgw know it is a composite number with -tc option?
If it fails that test with -tc option, it is composite.

2022-09-14, 05:55   #10
bbb120

"特朗普trump"
Feb 2019

22×3×11 Posts

Quote:
 Originally Posted by rogue That depends upon the numbers you want to test. Please provide more details.
what does "F-Strong test" mean in pfgw?

2022-09-14, 06:09   #11
bbb120

"特朗普trump"
Feb 2019

22×3×11 Posts

Quote:
 Originally Posted by VBCurtis If it fails that test with -tc option, it is composite.
I want to know why,or the algorithm behind it!

Last fiddled with by bbb120 on 2022-09-14 at 06:10

 Similar Threads Thread Thread Starter Forum Replies Last Post Batalov And now for something completely different 207 2022-11-25 21:30 bur GPU Computing 6 2020-08-28 06:20 JonathanM Information & Answers 25 2020-06-16 02:47 marco_calabresi Information & Answers 3 2009-04-17 19:44 TTn PSearch 0 2004-05-04 13:16

All times are UTC. The time now is 15:52.

Sat Nov 26 15:52:50 UTC 2022 up 100 days, 13:21, 1 user, load averages: 0.86, 1.04, 0.99

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔