![]() |
![]() |
#1 |
May 2010
499 Posts |
![]()
This is the k which yielded TPS's first twin. I've tested both the -1 and the +1 sides until n=50K, and the -1 list of primes is below.
Code:
2003663613*2^6-1 2003663613*2^14-1 2003663613*2^19-1 2003663613*2^52-1 2003663613*2^59-1 2003663613*2^108-1 2003663613*2^139-1 2003663613*2^158-1 2003663613*2^396-1 2003663613*2^427-1 2003663613*2^436-1 2003663613*2^484-1 2003663613*2^540-1 2003663613*2^642-1 2003663613*2^806-1 2003663613*2^972-1 2003663613*2^1015-1 2003663613*2^1176-1 2003663613*2^1275-1 2003663613*2^1602-1 2003663613*2^1638-1 2003663613*2^1646-1 2003663613*2^2464-1 2003663613*2^2500-1 2003663613*2^2635-1 2003663613*2^3948-1 2003663613*2^5202-1 2003663613*2^8088-1 2003663613*2^8680-1 2003663613*2^12942-1 2003663613*2^12970-1 2003663613*2^16582-1 2003663613*2^17835-1 2003663613*2^22686-1 2003663613*2^23448-1 2003663613*2^23580-1 2003663613*2^37286-1 2003663613*2^40264-1 2003663613*2^42679-1 2003663613*2^57003-1 2003663613*2^61287-1 2003663613*2^64884-1 2003663613*2^66664-1 2003663613*2^77126-1 2003663613*2^94787-1 2003663613*2^96979-1 2003663613*2^109828-1 2003663613*2^152383-1 2003663613*2^187323-1 2003663613*2^193956-1 2003663613*2^195000-1 Code:
2003663613*2^21+1 2003663613*2^29+1 2003663613*2^45+1 2003663613*2^64+1 2003663613*2^80+1 2003663613*2^94+1 2003663613*2^150+1 2003663613*2^184+1 2003663613*2^293+1 2003663613*2^428+1 2003663613*2^478+1 2003663613*2^580+1 2003663613*2^704+1 2003663613*2^1501+1 2003663613*2^1518+1 2003663613*2^1532+1 2003663613*2^1628+1 2003663613*2^1925+1 2003663613*2^2422+1 2003663613*2^3845+1 2003663613*2^4294+1 2003663613*2^5488+1 2003663613*2^12381+1 2003663613*2^13662+1 2003663613*2^16940+1 2003663613*2^32741+1 2003663613*2^36909+1 2003663613*2^38613+1 2003663613*2^46868+1 2003663613*2^49589+1 2003663613*2^69317+1 2003663613*2^87910+1 2003663613*2^97740+1 2003663613*2^129397+1 2003663613*2^132632+1 2003663613*2^145134+1 2003663613*2^154988+1 2003663613*2^183092+1 2003663613*2^195000+1 0-50K: Oddball (complete) 50K-195K: Puzzle-Peter (complete) This is the k that yielded TPS's second twin. The list of primes for the -1 side is below: Code:
65516468355*2^15-1 65516468355*2^181-1 65516468355*2^213-1 65516468355*2^315-1 65516468355*2^373-1 65516468355*2^675-1 65516468355*2^1275-1 65516468355*2^2023-1 65516468355*2^4770-1 65516468355*2^7738-1 65516468355*2^13122-1 65516468355*2^17641-1 65516468355*2^24373-1 65516468355*2^58711-1 65516468355*2^206050-1 65516468355*2^333333-1 Here's the +1 side: Code:
65516468355*2^23+1 65516468355*2^59+1 65516468355*2^81+1 65516468355*2^91+1 65516468355*2^94+1 65516468355*2^113+1 65516468355*2^144+1 65516468355*2^155+1 65516468355*2^173+1 65516468355*2^176+1 65516468355*2^188+1 65516468355*2^219+1 65516468355*2^253+1 65516468355*2^275+1 65516468355*2^289+1 65516468355*2^296+1 65516468355*2^365+1 65516468355*2^443+1 65516468355*2^505+1 65516468355*2^523+1 65516468355*2^600+1 65516468355*2^745+1 65516468355*2^759+1 65516468355*2^949+1 65516468355*2^1000+1 65516468355*2^1033+1 65516468355*2^1268+1 65516468355*2^1435+1 65516468355*2^3216+1 65516468355*2^3721+1 65516468355*2^3728+1 65516468355*2^5089+1 65516468355*2^5583+1 65516468355*2^5588+1 65516468355*2^6115+1 65516468355*2^6480+1 65516468355*2^6505+1 65516468355*2^8436+1 65516468355*2^10896+1 65516468355*2^13907+1 65516468355*2^16635+1 65516468355*2^20264+1 65516468355*2^20709+1 65516468355*2^21105+1 65516468355*2^21263+1 65516468355*2^28323+1 65516468355*2^30845+1 65516468355*2^45420+1 65516468355*2^67296+1 65516468355*2^70983+1 65516468355*2^79625+1 65516468355*2^80756+1 65516468355*2^97171+1 65516468355*2^103856+1 65516468355*2^159247+1 65516468355*2^236464+1 65516468355*2^276270+1 65516468355*2^305518+1 65516468355*2^318484+1 65516468355*2^333333+1 Reservations: 0-333333: Merfighters (in progress) Last fiddled with by Oddball on 2010-10-17 at 18:19 |
![]() |
![]() |
![]() |
#2 | |
Mar 2006
Germany
287810 Posts |
![]() Quote:
On the -1 side the series is prim for n=6, 14 and 19 and on the +1 side prime for n=21 and 29! So be sure you know what you're doing and please use srsieve NOT NewPGen for small primes! Last fiddled with by Oddball on 2010-10-10 at 17:31 |
|
![]() |
![]() |
![]() |
#3 | ||
May 2010
1111100112 Posts |
![]() Quote:
Quote:
NewPGen was only used for sieving 5000<=n<=50000. |
||
![]() |
![]() |
![]() |
#4 | |
Mar 2010
On front of my laptop
7·17 Posts |
![]() Quote:
Anyway, can I try k=65516468355? (Twin record k) Edit: Can you edit the name of this thread? Last fiddled with by Merfighters on 2010-08-18 at 05:24 |
|
![]() |
![]() |
![]() |
#5 |
May 2010
499 Posts |
![]() |
![]() |
![]() |
![]() |
#6 |
May 2010
1111100112 Posts |
![]() |
![]() |
![]() |
![]() |
#7 |
Jun 2009
683 Posts |
![]()
OK, I'll fill the gaps 50001 - 195000 for k=2003663613.
One question: when I run WinPFGW with -t switch and I get entries in a file called pfgw-prime.log, are they primes or just PRPs to be proven later? Thanks, Peter |
![]() |
![]() |
![]() |
#8 | |
Nov 2008
2×33×43 Posts |
![]() Quote:
Secondly, only use the -t switch for the +1 side. Use the -tp switch for the -1 side. Thirdly, it's faster to run PRP tests (i.e. no -t or -tp) instead of deterministic tests, then prove the PRPs with -t or -tp as necessary. |
|
![]() |
![]() |
![]() |
#9 | |
Jun 2009
2AB16 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#10 | |
A Sunny Moo
Aug 2007
USA (GMT-5)
3×2,083 Posts |
![]() Quote:
In response to your second question, I'm not sure what you mean; if you're asking whether it switches to a "real" primality test automatically, the answer is no. What you do is first run PFGW to do PRP tests, like this: pfgw -l input.txt (or however you're inputting your candidates--if you're using -fx to factor the candidates one at a time before testing, you'll want to include that as well) Then, when the range is done, results will be output to pfgw.out, and your PRPs will be output to pfgw.log. Now prove them with: pfgw -t pfgw.log (for the +1 side) pfgw -tp pfgw.log (for the -1 side) The proven primes will be output to pfgw-prime.log. Actually, since you're doing a straight-up prime search (as opposed to something fancier like a conjecture search), I would recommend using LLR instead of PFGW for testing. Of course, you'll need to sieve the range first instead of having the numbers factored one at a time prior to PRP testing; but it shouldn't take long to sieve to a reasonably optimal depth for numbers this small. The nice thing about using LLR is that it does a "real" primality test right from the get-go, but since it's doing an LLR or Proth test instead of an N-1/N+1, there's no speed penalty to using the full primality test. (Note that some of what I've said above is incorrect for bases other than 2, but your search here is strictly base 2 so I didn't bother expounding in that direction.) Last fiddled with by mdettweiler on 2010-08-19 at 19:41 Reason: typo |
|
![]() |
![]() |
![]() |
#11 |
Jun 2009
683 Posts |
![]()
That's exactly what I was wondering about, thank you!
This is unknown territory for me. I did and do a lot of manual sieving and LLRing for Prime Grid, but I never had to create the candidate files. First I thought about using NewPGen for sieving, but this is a fixed-k search. Using the "increase n by 1" option would have given me 145,000 files with one or zero candidates each, right? That's why I preferred PFGW. After reading the documentation I realized the input file was only two lines and created within a few seconds ;) Right, so I switched to PRPing and will do the conclusive primality tests only for the PRPs. Something related: I tried using LLR on candidates of the form k*b^n-1 with b =/= 2 and the output was giving me "not prime" or "PRP". Can I use PFGW for the final primality test on these PRPs? Sorry for stretching your patience... |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 3 | 2017-08-10 13:47 |
Distribution of Mersenne primes before and after couples of primes found | emily | Math | 34 | 2017-07-16 18:44 |
Conjecture about Mersenne primes and non-primes v2 | Mickey1 | Miscellaneous Math | 1 | 2013-05-30 12:32 |
A conjecture about Mersenne primes and non-primes | Unregistered | Information & Answers | 0 | 2011-01-31 15:41 |
possible primes (real primes & poss.prime products) | troels munkner | Miscellaneous Math | 4 | 2006-06-02 08:35 |