mersenneforum.org Largest 10^147-c Brilliant Number (p74*p74)
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2021-04-25, 05:23 #34 VBCurtis     "Curtis" Feb 2005 Riverside, CA 5,557 Posts I made up some parameters and ran this C103 as a quartic SNFS job on CADO. Took a 2-hyperthreaded instance about 6 minutes to solve on a 12-core machine with 18 other threads busy.
2021-04-25, 06:52   #35
Branger

Oct 2018

31 Posts

And six more base-2 brilliant number, one of which took much longer than expected to find..

Code:
2^353-4203
=
125269909676882800262400105725282077739582106921689791
*
146467647140855997175976549181141923664201888942622379

2^353+20321
=
107212617965684231006696661224016764909923510204087201
*
171136469531909496395965898436670289930931414420683713

2^355-6237
=
201078246063474095502015538594857010445540999246436799
*
364992022501105116452215910637465538969268898994717469

2^355+11609
=
212926542994048279183611705107994489885983607534577991
*
344682042359245646786699688221203535450205665111934047

2^357-84009
=
453147361357734286103874959805167254938456672363539113
*
647841845458687143039115572227866832044273303789018751

2^357+293447
=
470652756196708146570444118328602847134424064755521003
*
623746103643411393320202884671105782953351092003850773
None of these were in the factordb before at least, so they may be new.
Attached Files
 2_353_plus_and_minus_factored.txt (55.6 KB, 135 views) 2_355_plus_and_minus_factored.txt (39.6 KB, 142 views) 2_357_minus_factored.txt (190.3 KB, 135 views) 2_357_plus_factored.txt (690.3 KB, 142 views)

2021-05-05, 18:29   #36
swishzzz

Jan 2012

25·3 Posts

Quote:
 Originally Posted by swishzzz Test run of Amazon EC2 free tier. A 103 digit snfs job with factmsieve.py takes around 2.5 hours on a single t2 micro Windows instance running at 10% CPU capacity, perhaps this will be faster on a Linux instance with CADO. Code: 2^339 + 15885 Sat Apr 24 15:56:40 2021 p51 factor: 887592350957138861091733941658539740396245192826267 Sat Apr 24 15:56:40 2021 p52 factor: 1261696734859514200896533536322632897894845904544119
2^339 ± c completed:

Code:
2^339 - 27235 =
967306904908920452789078319450002924493095732788319 *
1157721882688666313356029082874219101278312435085187
Attached Files
 339b_brilliant.txt (23.0 KB, 136 views)

2021-08-24, 12:45   #37
Branger

Oct 2018

3110 Posts

Four more base-2 brilliant numbers:

Code:
2^359-123577
=
818923988648227215894707705730371540540812518512510431
*
1433919762596343433061717035212209825301021813200029081

2^359+14621
=
1005099120748900459161798514928920510471822535126047147
*
1168313917648207456964919118126527398761685430631874647

2^361-6273
=
1560537277762292011030721646497096890825992876952316309
*
3009915387784249643267311161037214234010646089476820931

2^361+44571
=
1588267509671791256308972554753220446511580018944216381
*
2957364006343175263301783757664193291901358679995452983
Proof files are attached.
Attached Files
 2_359_minus_factored.txt (285.8 KB, 115 views) 2_359_plus_factored.txt (33.1 KB, 112 views) 2_361_minus_factored.txt (14.3 KB, 109 views) 2_361_plus_factored.txt (101.3 KB, 115 views)

 2021-10-21, 17:07 #38 Branger   Oct 2018 3110 Posts And another batch finished: Code: 2^363-291 = 4094013899900989030912375965276208433376145195035983021 * 4589222489607338458027850363512336418671632190977908977 2^363+163109 = 3594544799178917497808832006387639836453189974351828487 * 5226904020359514021042583817732061323376054356093003891 2^365-21055 = 6610188871706148247866877699982575091248185129696213497 * 11369321528836272916753163939935476417901514113750418441 2^365+25151 = 6975722917193176731536583299621002374191571619112667517 * 10773559033362830224264470417875672248024627915449550699 Proof files are attached.
2021-10-21, 18:55   #39
Branger

Oct 2018

3110 Posts

Quote:
 Originally Posted by Branger Proof files are attached.
Well, apparently not. Let's try that again.
Attached Files
 2_363_minus_factored.txt (676 Bytes, 89 views) 2_363_plus_factored.txt (379.1 KB, 96 views) 2_365_minus_factored.txt (47.8 KB, 83 views) 2_365_plus_factored.txt (56.8 KB, 85 views)

 2022-06-14, 13:56 #40 Alfred     May 2013 Germany 97 Posts Brilliant 201-digit number (10^201-c) "Releasing" 10^201-c. Tested any 1 <= c <= 40000.
 2022-08-01, 18:19 #41 swishzzz   Jan 2012 Toronto, Canada 25·3 Posts Releasing 10^199+c as well. No p100 * p100 found from 0 < c < 100000.
 2022-08-19, 20:55 #42 alpertron     Aug 2002 Buenos Aires, Argentina 32·163 Posts After a lot of work by Eric Jeancolas, the table of minimal and maximal base-2 brilliant numbers is complete up to exponent 400, as you can see at https://www.alpertron.com.ar/BRILLIANT2.HTM.
2022-09-19, 19:09   #43
Branger

Oct 2018

1F16 Posts

Two more for the table:

Code:
10^181-28457
=
1976780995904575262824882988600377384132720583677328095507348810273221986844127586224818989
*
5058729328498020382937746413638967841933983271360558098096714142401565169191733122358525587

10^181+38439
=
1054300060000730056488062242818121661270786887706547586912142454641191605667380983978269333
*
9484965788575479583285807708150981397722931500035054082588713947753467817475117863857748683
Proof files are attached.

I'm still working on 10^221+c, and I'm currently at about c=27000. It is slow going, however, so I will have to see how long my patience lasts.
Attached Files
 181_minus_factored.txt (71.3 KB, 24 views) 181_plus_factored.txt (98.7 KB, 23 views)

 Similar Threads Thread Thread Starter Forum Replies Last Post 2147483647 Factoring 49 2021-08-18 07:41 spkarra Math 3 2010-06-13 21:02 Citrix Prime Sierpinski Project 12 2006-05-19 22:21 Heather Math 90 2006-04-01 22:06 McBryce Lounge 39 2003-08-12 19:35

All times are UTC. The time now is 18:39.

Tue Dec 6 18:39:40 UTC 2022 up 110 days, 16:08, 0 users, load averages: 0.74, 0.70, 0.76

Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔