![]() |
![]() |
#12 |
Jul 2018
3×13 Posts |
![]()
range: int[exp(43)]-2e12 to int[exp(43)]+2e12
4727837468229346561 to 4727841468229346561 range:4 trillion, 19 decimal digit, real positive integer. ln(middle point of range)=43 7tuplet rough range count=?56*4*1e12/43^7=824 (oeis.org/A022009)) septuplet mean: 30n+11, 30n+13, 30n+17, 30n+19, 30n+23, 30n+29, 30n+30+1 real septuplet count:815 815 very near 824, but not lower limit, only rough count! _________ range: int[exp(41))-2e12 to int[exp(41)]+2e12 range: 639841493530054949 to 639845493530054949 range:4 trillion, 18 decimal digit, real positive integer. ln(middle point of range)=41 7tuplet rough range count=? 56*4*1e12/41^7=1150 real septuplet count:1141 1150 very near 1141 __________ range: int[exp(39)]-2e12 to int[exp(39)]+2e12 range: 86591400423993746 to 86595400423993746 range:4 trillion, 17 decimal digit, real positive integer. ln(middle point of range)=39 7tuplet rough range count=? 56*4*1e12/39^7=408*4=1632 7tuplet real count=1600 1600 very near 1632 ___________ range: int[exp(36)]-2e12 to int[exp(36)]+2e12 range: 4309231547115195 to 4313231547115195 range:4 trillion, 16 decimal digit, real positive integer. ln(middle point of range)=36 7tuplet rough range count=? 56*4*1e12/36^7=2858 7tuplet real count=2764 2858 near 2764, but not very near! ____________ range: int[exp(33)]-2e12 to int[exp(33)]+2e12 range: 212643579785916 to 216643579785916 range:4 trillion, 15 decimal digit, real positive integer. ln(middle point of range)=33 7tuplet rough range count=? 56*4*1e12/33^7=5255 7tuplet real count=5122 5255 near 5122 ____________ exp(n): if n is not integer? range: int[exp(30,3)]-2e12 to int[exp(30,3)]+2e12 range: 12425231835807 to 16425231835807 range:4 trillion, 14 decimal digit, real positive integer. ln(middle point of range)=30,3 7tuplet rough range count=? 56*4*1e12/(30,3)^7=9533 7tuplet real count=9308 9533 near 9308 _______________ all ranges: 4 trillion fix range. if numbers goes to big numbers, septuplet real counts goes to small numbers, because range fix! _______________ question: exp(n-0,5) to exp(n+0,5) ranges real septuplet count? _______________ range: 0 to int[exp(27,5)] range: 0 to 877199251318 ln(middle point of range): ln((exp(27,5))/2)=26,806852819439182678541554041555 56*exp(27,5)/(26,806852819439182678541554041555)^7=4938 real culumaltive septuplet count=5539 not very near, only near, and cumulative septulet rough count is lower limit allways! (if n>30 then) _________ range: exp(28-+0,5) range:877199251318 to 2384474784797 note: exp(27,5) to exp(28,5) middle point not exp(28) of course, but near! my calculation only rough! 56*exp28/28^7=6002 rough count appr. real 7tuplets count= 5810 not very near but only near and not lower limit result! important: ( 0 to exp(27,5) septuplet cumulative count) < (exp(27,5) to exp(28,5) range septuplet count) if n>30 then, n is an integer or not: every exp(n-+0,5) range septuplet count > (0 to previous range cumulative count) so infnity septuplet there are. every septuplet contain 3 twin prime, so infinity twinprime there are! this is not math proof! only look full picture. _________ range: exp(29-+0,5) range:2384474784797 to 6481674477934 56*exp29/29^7=12762 real 7tuplets count: 12694 very near but not lower limit! _____________ range: exp(30-+0,5) range:6481674477934 to 17619017951355 56*exp30/30^7=27363 real septuplet count=27179 very near result! _______________ range: exp(31-+0,5) range:17619017951355 to 47893456332463 56*exp31/31^7=59126 real septuplet count=58592 very near result! this rough counts, and rough count formulas, not important! important question: how is it every prime template's direct elements groups regularly? for example: how is regularly?, 7 prime same time group:30n+11, 30n+13, 30n+17, 30n+19, 30n+23, 30n+29, 30n+30+1 if, math people: this every prime template's direct elements groups regularly, proofed near future, very simple bottom lines: range:exp(N-0,5) to exp(N+0,5) exp(1e6-+0,5) rough septuplet count? A=56*exp(1e6)/(1e6)^7 exp(1e6+1-+0,5) rough septuplet count? B=56*exp(1e6+1)/(1e6+1)^7 ((1e6+1)^7/(1e6)^7)=1,000007000021000035000035000021e+42/1e42=1,000007000021000035000035000021... B/A= =exp(1)/1,000007000021000035000035000021 =2,7182628... _2,7182818284590452353602874713527... :real exp(1) exp(1e9-+0,5) rough septuplet count? C=56*exp(1e9)/(1e9)^7 exp(1e9+1-+0,5) rough septuplet count? D=56*exp(1e9+1)/(1e9+1)^7 (1e9+1)^7/(1e9)^7=1,000000007000000021000000035e+63/1e+63 =1,000000007000000021000000035000000035000000021... D/C=exp(1)/1,000000007000000021000000035000000035000000021... =2,718281809... _2,7182818284590452353602874713527... : real exp(1) note: number <exp(30) then septuplet big fluctations! for example: exp(29-+0,5) septuplet count / exp(28-+0,5) septuplet count=12694/5810=2,18485...>exp(1) but: exp(30-+0,5) septuplet count / exp(29-+0,5) septuplet count=27179/12694 =2,141.. <exp(1) exp(31-+0,5) septuplet count / exp(30-+0,5) septuplet count=58592/27179 =2,15578... <exp(1) if numbers < exp(30) then septuplets count big fluctations, but, for example numbers > exp(1e6) then sextuplets count very regularly and fluctations very small! good by everyone, my brain fault again, i am going to ... |
![]() |
![]() |
![]() |
#13 |
Aug 2006
174916 Posts |
![]()
Sorry, I can't make any sense of this.
|
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Small but nontrivial prime puzzle | mart_r | Puzzles | 85 | 2018-02-11 18:55 |
Prime Gap Length with consecutive integers divisible by small primes | carpetpool | Prime Gap Searches | 45 | 2017-09-30 20:51 |
Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve | mickfrancis | Factoring | 2 | 2016-05-06 08:13 |
Small prime test divisor efficiency strategy | fenderbender | Math | 5 | 2007-07-18 18:39 |
Small set of 12 | GP2 | Completed Missions | 2 | 2003-10-03 18:30 |