![]() |
![]() |
#1 | |
May 2013
Germany
6116 Posts |
![]() Quote:
The attached file shows one factor (prime or composite but with less digits) for any of these c's - or it indicates that 10^147-c is prime. Since https://www.alpertron.com.ar/BRILLIANT.HTM is missing this number, I hope it is new. |
|
![]() |
![]() |
![]() |
#2 | |
May 2013
Germany
97 Posts |
![]() Quote:
The attached file shows one factor (prime or composite but with less digits) for any of these c's - or it indicates that 10^151-c is prime. https://www.alpertron.com.ar/BRILLIANT.HTM does not show this number yet. |
|
![]() |
![]() |
![]() |
#3 |
Jan 2012
Toronto, Canada
25×3 Posts |
![]()
Could I reserve 152 digits? I've already begun sieving and am about 10 SNFS factorizations in.
|
![]() |
![]() |
![]() |
#4 |
May 2013
Germany
97 Posts |
![]()
Yes, of course.
Thank you for your information. I'd like to take the numbers 10^153-c. |
![]() |
![]() |
![]() |
#5 | |
May 2013
Germany
97 Posts |
![]() Quote:
The attached file shows the smallest prime factor for any of these c's - or it indicates that 10^153-c is prime. https://www.alpertron.com.ar/BRILLIANT.HTM does not show this number yet. |
|
![]() |
![]() |
![]() |
#6 |
Jan 2012
Toronto, Canada
11000002 Posts |
![]()
10^151+14541 =
1892066823280306942402672399836621036921105169101702440417171708556479073929 * 5285225594021482704171643427873368811118569345423620874203438445689349531429 Factors of all n=10^151+c with c < 14541 and n either prime or with no prime factors < 20M attached in the file. Also the entry for 35 on here is incorrectly listed on https://www.alpertron.com.ar/BRILLIANT.HTM, 10^35-783 = 290795768932439557 * 343883958033904381 is a larger 35 digit brilliant number. Reserving 10^155+c (156 digits). |
![]() |
![]() |
![]() |
#7 | |
May 2013
Germany
97 Posts |
![]() Quote:
The appended file proves this. Any line (except the last one) has exactly two entries. The first shows c. The second is either the letter 'p' (indicating that 10^86-c is prime) or a prime factor of 10^86 - c with length different from 29. The file contains a line for any odd 1 <= c <= 2007389, of course. |
|
![]() |
![]() |
![]() |
#8 | |
Jan 2012
Toronto, Canada
6016 Posts |
![]()
10^155+7213 is the smallest 156-digit number that factors into two 78-digit primes:
Quote:
|
|
![]() |
![]() |
![]() |
#9 |
Jan 2012
Toronto, Canada
25×3 Posts |
![]()
2^303 - 39727 is the largest 303-bit number that splits into two 152-bit primes:
Code:
p46 factor: 3755140210209107891033403488267039571419053517 p46 factor: 4339728185480567523635423762618623528383356693 |
![]() |
![]() |
![]() |
#10 |
Jan 2012
Toronto, Canada
25×3 Posts |
![]()
A few more 2-bit brilliant numbers:
Code:
2^297 - 7405 = 465449598594965125759568006862384515773478687 * 547061374229242156241055675491722178284755341 2^297 + 4301 = 447742596479348597082150804288878401042937171 * 568696163920948572072084351914463588415143263 2^299 - 31527 = 1006551460876452757803140363636308794862182167 * 1011888639335310739700404874667161763668291983 |
![]() |
![]() |
![]() |
#11 |
Jan 2012
Toronto, Canada
25·3 Posts |
![]()
Remaining base 2 brilliant numbers below 2^300:
Code:
2^295 - 13429 = 198510202319234021827282742860868097914815709 * 320675579978917834648228904658346016622753671 2^295 + 175343 = 199744320796412845995530912316777151860992621 * 318694288812019609071170106942006301252918091 Code:
17679 135424819131071650335816726305171046618468269 (45 digits) 28295 125056028398373651690810269127016407925857333 (45 digits) 68783 137665243947612845545922338816114028907278423 (45 digits) 90429 129289940650813391118621997356910828821798721 (45 digits) 112521 131584492955893608563695147526439257589143029 (45 digits) 124865 119468736668192803702619666384916214225482473 (45 digits) 148539 123275618234627848456962842180515532135679871 (45 digits) 165689 177963429546572797306584739591706914778068901 (45 digits) Last fiddled with by swishzzz on 2020-11-02 at 14:03 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Smallest 10^179+c Brilliant Number (p90 * p90) | 2147483647 | Factoring | 49 | 2021-08-18 07:41 |
Known Largest Harshad Number. | spkarra | Math | 3 | 2010-06-13 21:02 |
10^119+x brilliant number | Citrix | Prime Sierpinski Project | 12 | 2006-05-19 22:21 |
Number of zero's in largest prime... | Heather | Math | 90 | 2006-04-01 22:06 |
New largest prime number??? | McBryce | Lounge | 39 | 2003-08-12 19:35 |