mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Miscellaneous Math

Reply
 
Thread Tools
Old 2018-02-27, 12:28   #1
JM Montolio A
 
Feb 2018

9610 Posts
Cool A new aproach to C.Collatz. 3n+1...

For all Collatz series, starting with any odd n, always meets the equation:

(2^M)- P = n*(3^STEPS)

With M,P functions of n.

JM M
JM Montolio A is offline   Reply With Quote
Old 2018-02-27, 14:28   #2
CRGreathouse
 
CRGreathouse's Avatar
 
Aug 2006

175B16 Posts
Default

Does this tell us anything more than "the number of steps is a function of n"?
CRGreathouse is offline   Reply With Quote
Old 2018-02-27, 15:33   #3
JM Montolio A
 
Feb 2018

25×3 Posts
Default

Conjetura de Collatz-Ulam. (Lothar Collatz. Stanislaw Ulam)

Definición. Se define la función productoPotencia, , como la suma de productos de D, en binario, por una secuencia de potencias de tres. Se ignoran los bit cero.

proPOT(D) = SUM( (3^I)*(2^J) ).

Ejemplo. D=151 =128+16+4+2+1.
proPOT(151) =SUMA[(1,3,9,27,81)*(128,16,4,2,1)] =347.

Collatz-Ulam es la t-serie con la ec.de paso: 3*e+1 = (2^g)*e' , donde N=0, eFinal=1, y eInicial el valor inicial.
Ec. equivalente a la función de Syracuse. Syracuse(e)=e'.

Ejemplo con eInicial =7
e: 7,11,17,13,5,1. g: 1,1,2,3,4. M=11. D= 1+2+4+16+128 = 151.

Ec. de intervalo: (2^11) = proPOT(151) + (7)*(3^5)

Siendo:
proPOT(151)= SUMA[(1,3,9,27,81)*(128,16,4,2,1)] =347.
#pasos =bits(D) =5

Teorema
Para la serie de Collatz se obtiene:

(2^Collatz_M(eInicial)) =proPOT(D) + (eInicial)*(3^bits(D))

y la conjetura equivale a afirmar que para todo n, existe un d tal que:

2^Collatz_M(n) -proPOT(D) = n*3bits(D)

Algunas soluciones
M D n 3^bits(D)
(2^ 5) = proPOT( 3) + 3 * (3^ 2)
(2^11) = proPOT( 151)+ 7 * (3^ 5)
(2^13) = proPOT( 605)+ 9 * (3^ 6)
----------------------------------------------------------------------


Share Knowledge.

JM M
JM Montolio A is offline   Reply With Quote
Old 2018-02-27, 15:44   #4
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

59·163 Posts
Default

Quote:
Originally Posted by JM Montolio A View Post
Share Knowledge.
.
Attached Thumbnails
Click image for larger version

Name:	Water_drop_animation_enhanced_small.gif
Views:	148
Size:	59.2 KB
ID:	17772  
Batalov is offline   Reply With Quote
Old 2018-02-27, 17:47   #5
JM Montolio A
 
Feb 2018

25·3 Posts
Default

Mire, Sr. Sergev Batalov. Replique a mis post ó no los conteste.
Pero yo no entro aquí para las tonterias. De nadie.

JM Montolio
JM Montolio A is offline   Reply With Quote
Old 2018-02-27, 18:11   #6
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

59×163 Posts
Default

Why do you post nonsense then?
You should not take nonsense from anyone. Including yourself.

And what, are you denying other people the right to not take nonsense from anyone?
Batalov is offline   Reply With Quote
Old 2018-02-27, 20:00   #7
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

59·163 Posts
Default

The water drip observation was aimed at all of your odd dozen last threads, which are peppered all over the forum all of a sudden and all of which are
"New"
"Useful"

etc.
Even the forum software recognizes you as a spammer.

Please learn some modesty and learn to listen to others.

Quote:
Originally Posted by VBCurtis View Post
If you'd stop calling your trivial observations "useful", you (and the forum) would be much better off.
Batalov is offline   Reply With Quote
Old 2018-02-27, 20:25   #8
JM Montolio A
 
Feb 2018

11000002 Posts
Default

If one post is NOT NEW, please tell about it,
and can be deleted. No problem.

If one post is NOT USEFUL, same thing.

No problem on corrections.

Delete, move.

But with respect.

JM M
JM Montolio A is offline   Reply With Quote
Old 2018-02-27, 21:06   #9
Batalov
 
Batalov's Avatar
 
"Serge"
Mar 2008
Phi(4,2^7658614+1)/2

59·163 Posts
Default

Quote:
Originally Posted by JM Montolio A View Post
If one post is NOT NEW, please tell about it,
and can be deleted.
...

Delete, move.
What you are describing is censorship.
... Also can you kindly explain how someone can "delete with respect"?

What I am describing is free speech.

P.S. Btw, in case you are not understanding it - everyone with nicknames in red is a moderator. You are talking to a moderator. A moderator who had enough dealing with spam.
Batalov is offline   Reply With Quote
Old 2018-02-28, 11:22   #10
JM Montolio A
 
Feb 2018

25·3 Posts
Smile Dr. Batalov, le agradezco su paciente comprensión.

Reciba usted mis mejores grifos.


JMMA
Attached Thumbnails
Click image for larger version

Name:	GRIFITOS.jpg
Views:	118
Size:	19.5 KB
ID:	17778  
JM Montolio A is offline   Reply With Quote
Old 2018-02-28, 20:06   #11
Collag3n
 
Feb 2018

108 Posts
Default

Nothing new.
If you apply the Condensed Collatz function \frac{3e+1}{2^g} starting from 7 until you reach 1, you get
11=\frac{3\cdot7+1}{2^1}
17=\frac{3\cdot(\frac{3\cdot7+1}{2^1})+1}{2^1}=\frac{3^2}{2^2}\cdot7+\frac{3^1}{2^2}+\frac{3^0}{2^1}

...

1=\frac{3^5}{2^{11}}\cdot 7+\frac{3^4}{2^{11}}+\frac{3^3}{2^{10}}+\frac{3^2}{2^9}+\frac{3^1}{2^7}+\frac{3^0}{2^4}

or rearranged:

7=\frac{2^{11}}{3^5} - (\frac{2^7}{3^5}+\frac{2^4}{3^4}+\frac{2^2}{3^3}+\frac{2^1}{3^2}+\frac{2^0}{3^1})

multiply by 3^5 and you get

7\cdot 3^5=2^{11} - (2^7\cdot 3^0+2^4\cdot 3^1+2^2\cdot 3^2+2^1\cdot 3^3+2^0\cdot 3^4)
or
7\cdot 3^5=2^{11} - (128\cdot 1+16\cdot 3+4\cdot 9+2\cdot 27+1\cdot 81)

all you do is rearrange the whole thing.
Collag3n is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Collatz Conjecture Proof Steve One Miscellaneous Math 21 2018-03-08 08:18
this thread is for a Collatz conjecture again MattcAnderson MattcAnderson 16 2018-02-28 19:58
A new aproach to C. Erdös-Straus. 4/n=... JM Montolio A Miscellaneous Math 6 2018-02-27 20:20
Collatz conjecture MattcAnderson MattcAnderson 4 2017-03-12 07:39
Related to Collatz conjecture nibble4bits Math 1 2007-08-04 07:09

All times are UTC. The time now is 11:19.


Sun Dec 5 11:19:02 UTC 2021 up 135 days, 5:48, 0 users, load averages: 1.24, 1.27, 1.44

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.