2004-09-14, 02:35 | #1 |
May 2004
474_{8} Posts |
Carmichael Numbers II
A CONJECTURE
Let N = p1p2....pr The necessary and sufficient condition for N, an r-factor composite number, to be a Carmichael Number: (p1-1)(N-1)^(r-2)/ (p2-1)(P3-1)....(pr-1), (p2-1)(N-1)^(r-2)/ (p1-1)(p3-1)... (pr-1), . . . (pr-1)(N-1)^(r-2)/(p1-1)......... (p(r-1)-1) should ALL be integers. A.K. Devaraj |
2004-09-16, 06:06 | #2 |
May 2004
2^{2}×79 Posts |
Carmichael Numbers II
I would be surprised if anyone can show a counter example.
Devaraj |
Thread Tools | |
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Carmichael numbers and Devaraj numbers | devarajkandadai | Number Theory Discussion Group | 0 | 2017-07-09 05:07 |
Carmichael Numbers | Stan | Miscellaneous Math | 19 | 2014-01-02 21:43 |
Carmichael numbers (M) something | devarajkandadai | Miscellaneous Math | 2 | 2013-09-08 16:54 |
Carmichael Numbers | devarajkandadai | Miscellaneous Math | 0 | 2006-08-04 03:06 |
Carmichael Numbers | devarajkandadai | Math | 0 | 2004-08-19 03:12 |