![]() |
|
|
#89 |
|
Feb 2017
Nowhere
13×17×29 Posts |
|
|
|
|
|
|
#90 |
|
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
172158 Posts |
|
|
|
|
|
|
#91 |
|
"Curtis"
Feb 2005
Riverside, CA
585410 Posts |
|
|
|
|
|
|
#92 | |
|
"ม้าไฟ"
May 2018
2·3·89 Posts |
Quote:
While still considering the applicability of the standard Ulam spiral versus the Ulam spiral of prime numbers, meanwhile I intend to concentrate on TF and P-1 tests of a few hundred 28-bit prime exponents at the LCS ∩ BSE intersection (listed below). Code:
134319307, 135113387, 135226027, 137421587, 137443751, 137465033, 137767621, 137767681, 141657757, 141662617, 141677359, 144335641, 144491777, 144542399, 144759757, 148552753, 148561201, 149489201, 149489573, 149523601, 149526683, 149539889, 149542973, 149546641, 149865241, 154544177, 154544837, 158739221, 159414859, 160026343, 160039699, 160053857, 160190183, 160915879, 160916083, 160985497, 160996813, 161057191, 161543399, 161880113, 161899289, 162587441, 162610087, 162611623, 165179869, 167561501, 167571071, 167880563, 168024221, 168215893, 168659627, 174076219, 174113561, 174238769, 174266777, 174371143, 175515661, 176625821, 177736753, 177737551, 177760733, 177761621, 177762769, 177773333, 177782833, 178882097, 178955779, 178955879, 178962481, 179337787, 180587569, 182371613, 184365449, 184367893, 184445213, 185356007, 185436841, 185861789, 185864051, 185947441, 185948209, 185948317, 185958217, 185958413, 185958593, 190142417, 190178867, 190195391, 190195519, 192289891, 192292549, 192292669, 192514471, 192615811, 193341299, 193344257, 193906003, 194706019, 195342533, 196137937, 197335433, 197938883, 198174953, 204522781, 204549197, 204571417, 206385379, 206408387, 206488753, 214034921, 214216901, 214328089, 215193757, 215391871, 220445461, 220564159, 221250329, 221904157, 221975893, 222015809, 222101137, 223104619, 223750193, 226304219, 226308119, 226308419, 226308679, 226523747, 226695577, 227134513, 227135347, 227148199, 227150851, 227151139, 227162723, 227162899, 227191571, 231493351, 231493357, 231654751, 231683267, 232288643, 232288649, 232299913, 236466403, 236609959, 236610329, 236656009, 238752781, 242704433, 242846119, 244349543, 245205563, 245205673, 247479601, 247771333, 247780249, 247786571, 247786573, 247792009, 247793347, 247799077, 247799177, 247812911, 247813463, 247814041, 247814243, 247816147, 247816879, 255099673, 255530377, 256392497, 256436611, 256436617, 256686869, 256796957, 256829119, 256849319, 259401841, 261659843, 261776153, 265048291, 265534229 Note: An initial version of the attached histogram can be found at https://mersenneforum.org/showpost.p...1&postcount=43. Code:
144542399, 160026343, 162610087, 165179869, 167561501, 182371613, 185958217, 190142417, 190178867, 192514471, 220564159, 226304219, 226308679, 231683267, 242846119, 245205563, 247812911, 247813463, 247814041, 247816879, 256686869, 256796957 |
|
|
|
|
|
|
#93 |
|
"ม้าไฟ"
May 2018
2×3×89 Posts |
Let 𝜋(p) be the the prime-counting function,
and 𝜔(n) be the prime (little) omega function which counts the number of distinct prime factors in the integer n. Then 𝜔(𝜋(p)) of the 51 exponents of known Mersenne primes is given as {0,1,1,1,2,1,1,1,2,2,2,1,2,2,2,2,2,3,2,3,3,2,2,3,2,1,2,2,2,3,4,2,2,3,2,4,2,3,2,3,3,3,4,3,3,3,4,4,3,4,3}. For example, for p = 82589933: 𝜋(p) = 4811740 = 22 × 5 × 240587, and 𝜔(𝜋(p)) = 3. The histogram of 𝜔(𝜋(p)) from 0 to 8 for all 50847534 primes <109 is {1,3050022,11914315,17936312,12876751,4408426,633544,28013,150}, and the histogram of 𝜔(𝜋(p)) from 0 to 8 for the 51 exponents of known Mersenne primes is {1,8,21,15,6,0,0,0,0}. |
|
|
|
|
|
#94 |
|
"ม้าไฟ"
May 2018
2×3×89 Posts |
The list
{3,4,6,8,9,9,7,13,11,12,13,8,17,16,18,19,19,12,19,25,23,22,26,26,22,20,50} gives the sum of 1s at distinct bit positions from 1 to 27 for the 27-bit (with padding of 0s on the left) binary representation of the 51 known prime exponents of known Mersenne primes (see also the attached bar graph). The leftmost bit position 1 corresponds to the most significant bit (MSB) and the rightmost bit position 27 corresponds to the least significant bit (LSB). |
|
|
|
![]() |
| Thread Tools | |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Mersenne prime exponents that are also Sophie Germain primes | carpetpool | Miscellaneous Math | 5 | 2022-10-19 01:44 |
| Additive Properties of the Exponents of Known Mersenne Primes | Dobri | Dobri | 3 | 2021-10-05 06:56 |
| Observations of Wieferich primes and Wieferich-1 friendly club | hansl | Math | 3 | 2020-09-02 10:40 |
| Sophie-Germain primes as Mersenne exponents | ProximaCentauri | Miscellaneous Math | 15 | 2014-12-25 14:26 |
| Assorted formulas for exponents of Mersenne primes | Lee Yiyuan | Miscellaneous Math | 60 | 2011-03-01 12:22 |