mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > Dobri

Reply
 
Thread Tools
Old 2022-10-18, 12:45   #23
Dobri
 
"ม้าไฟ"
May 2018

21616 Posts
Default

Below are 2 cyclic LCS sets related to post #18 at https://mersenneforum.org/showpost.p...2&postcount=18.
The first cyclic LSC set contains 467 distinct cyclic LCSs for all 51 exponents of known Mersenne primes.
Code:
1
10
11
010
011
101
110
111
0010
0011
0110
0111
1000
1010
1011
1100
1101
1110
1111
00010
00011
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10110
10111
11001
11010
11011
11100
11101
11110
11111
000010
000011
000110
001001
001011
001100
001101
001110
001111
010001
010011
010100
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100011
100101
100110
100111
101000
101001
101011
101100
101101
101110
101111
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111
0000010
0000011
0000111
0001011
0001100
0001101
0010010
0010100
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
0100011
0100101
0100110
0100111
0101000
0101011
0101100
0101101
0101111
0110000
0110001
0110011
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111111
1000001
1000011
1000110
1000111
1001011
1001100
1001101
1001110
1001111
1010000
1010011
1010100
1010110
1011000
1011011
1011100
1011101
1011110
1011111
1100001
1100010
1100110
1100111
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111010
1111011
1111100
1111111
00000011
00001100
00001101
00010011
00011010
00011011
00011100
00011110
00100110
00110000
00110001
00110011
00110100
00110110
00110111
00111001
00111011
00111100
00111101
00111111
01000111
01001000
01001100
01001101
01001110
01010000
01010011
01010101
01011000
01011101
01011111
01100000
01100001
01100010
01100011
01100110
01100111
01101001
01101011
01101100
01101110
01110001
01110011
01110100
01111000
01111010
01111011
01111111
10000000
10000110
10001101
10001110
10010010
10011000
10011001
10011010
10011011
10011101
10011110
10011111
10100000
10100011
10100110
10100111
10101011
10101111
10110000
10110001
10110011
10110101
10111101
10111110
11000011
11000101
11001001
11001101
11001111
11010001
11010010
11010011
11010100
11010101
11011000
11011100
11011101
11100010
11100011
11100110
11100111
11101001
11101010
11101100
11101101
11101110
11110001
11110011
11110100
11110101
11110110
11110111
000001111
000010011
000100110
000110011
001001011
001001101
001011111
001100000
001100011
001100110
001101001
001101011
001101100
001101101
010000011
010001110
010011000
010011011
010011101
010101011
010110001
010111110
010111111
011000011
011000101
011001001
011001100
011001101
011011001
011011110
011100011
011101000
011101100
011110100
011111100
011111110
100000001
100011000
100011101
100101110
100110001
100110010
100110100
100110110
100110111
100111011
101000000
101000111
101001100
101011111
101100010
101100110
101101010
101110011
101110110
101111010
101111101
110000110
110001001
110001010
110010010
110010111
110011001
110011010
110011011
110100000
110100100
110100111
110101011
110101111
110110101
110110111
110111000
111000110
111001101
111001111
111010010
111010011
111011000
111011100
111100010
111101001
111101101
111110001
111110101
111111001
111111111
0011011110
0100011101
0100111011
0101000011
0101011001
0110011011
0110100111
0110101101
0110101111
0110110101
0110111101
0111011000
0111100110
1000110000
1000110001
1000111010
1001001011
1001100010
1001110011
1001111011
1010011000
1010011101
1010100110
1011001101
1011011101
1011100110
1011101000
1011101100
1100001100
1100010011
1100011101
1100110110
1100111011
1101001111
1101011110
1101100010
1101110001
1101110110
1110000110
1110001001
1110011110
1110100011
1111010011
1111111111
00000001111
00101111110
00110010111
00110011110
00110111000
00111011000
01101101011
01110100011
01110110110
01111010011
10011101110
10011110110
10100110001
10110001010
11000101000
11000110110
11000111010
11001011111
11001101000
11001111011
11011010101
11100110011
11101000110
11110100111
000100111011
001001011000
010010001110
010011000001
010011101110
011000111010
011101100010
100000110111
100011101001
100110110101
100111011100
101100110110
101110011010
110101001100
110110001010
111010011000
0000011110100
0000110001100
0001100011001
0101011001101
0110001001110
1100011000110
1100110110101
1110110001010
1110111000110
1111111001111
10011011010101
10011101100001
11000111010100
11010011101110
11011010101010
100001101001000
110101111101001
110110001010000
0100111011100110
1000011100011101
1011000101011001
Code:
(* Wolfram code *)
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; LCSa = ConstantArray[0, nMp*(nMp - 1)/2]; base = 2; count = 0;
ic = 0; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; s1 = IntegerDigits[MpData[[ic]], base, intlen1]; s1 = Join[s1, s1];
 jc = 0; While[jc < nMp, jc++; If[ic < jc, intlen2 = Length[IntegerDigits[MpData[[jc]], base]]; s2 = IntegerDigits[MpData[[jc]], base, intlen2]; s2 = Join[s2, s2];
   cs = LongestCommonSubsequence[s1, s2];
   If[cs != {}, fd = cs; mc = 1; kc = 0; While[kc < count, kc++; If[LCSa[[kc]] == fd, mc = 0;];]; If[mc == 1, count++; LCSa[[count]] = fd;];];
];];];
lcs = ConstantArray[0, count]; kc = 0; While[kc < count, kc++; lcs[[kc]] = LCSa[[kc]];]; lcs = Sort[lcs];
kc = 0; While[kc < count, kc++; Print[IntegerString[lcs[[kc]], base]];]; Print[count];
The second cyclic LSC set contains 471 distinct cyclic LCSs for all 51 exponents of known Mersenne primes when the bits of one of the exponents in each pair (i, j) are reversed so that its bit sequence is presented in a reversed order and the least significant bit (LSB) becomes the most significant bit (MSB).
Code:
1
10
11
010
011
101
110
111
0011
0101
0110
0111
1000
1010
1011
1100
1101
1110
1111
00010
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10001
10010
10011
10100
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
000010
000011
000110
000111
001001
001010
001011
001100
001101
001110
001111
010011
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100010
100011
100110
100111
101000
101001
101011
101100
101101
101110
101111
110000
110001
110010
110011
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111
0000010
0000101
0001001
0001100
0001101
0010010
0010011
0010110
0010111
0011000
0011001
0011011
0011100
0011101
0011110
0011111
0100000
0100011
0100100
0100110
0101000
0101001
0101011
0101100
0101101
0101110
0101111
0110001
0110011
0110101
0110110
0110111
0111001
0111011
0111101
0111111
1000110
1000111
1001011
1001100
1001101
1001110
1010111
1011000
1011010
1011101
1011110
1011111
1100000
1100001
1100010
1100100
1100101
1100110
1100111
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111001
1111010
1111011
1111101
1111111
00010110
00011001
00011010
00011011
00011101
00011110
00100110
00101100
00101111
00110001
00110011
00110110
00110111
00111010
00111011
00111100
00111111
01000110
01000111
01001100
01001101
01010110
01010111
01011000
01011001
01011110
01011111
01100000
01100001
01100011
01100110
01100111
01101001
01101010
01101100
01101101
01101111
01110001
01110010
01110011
01110110
01111000
01111001
01111101
01111111
10000000
10001100
10001101
10001110
10001111
10010010
10010111
10011000
10011001
10011010
10011100
10011101
10011111
10100011
10100110
10101111
10110001
10110011
10110101
10111011
10111101
10111111
11000001
11000010
11000011
11000101
11000111
11001001
11001011
11001100
11001101
11001111
11010010
11010011
11010100
11010101
11010110
11011000
11011001
11011100
11011101
11011110
11011111
11100001
11100010
11100110
11100111
11101000
11101001
11101010
11101100
11101101
11101111
11110000
11110011
11110100
11110101
11111000
11111001
11111010
000000011
000000101
000001011
000001101
000011001
000101000
000110001
000110111
001001011
001001100
001001101
001011101
001100000
001100011
001100101
001101100
001101110
010001100
010001101
010001111
010011000
010100011
010110011
010111100
010111101
011000000
011000001
011001101
011010100
011011001
011100011
011100100
011101010
011101100
011111100
011111110
100001101
100001110
100011000
100011010
100011011
100011100
100011101
100101100
100101110
100110000
100110001
100110101
100111001
100111011
101000110
101001100
101010110
101011111
101100011
101100110
101101011
101101110
101110001
101110011
101110110
101111001
101111101
110000010
110000110
110001001
110001011
110001110
110010111
110011001
110100100
110101000
110101011
110101111
110110001
110110011
110110101
110111100
110111101
111000101
111001011
111011100
111100111
111101000
111101011
111101101
111110101
111111001
111111111
0000110111
0001100110
0001101110
0010110101
0011011100
0011100100
0011101001
0101111110
0110001011
0110011001
0110011011
0110101010
0110111100
0111100110
0111101011
1000110000
1000110001
1000110011
1000110110
1001001011
1001011111
1001100101
1001101101
1001101110
1001110111
1010001101
1010110011
1010110111
1011000010
1011001101
1011100010
1011110000
1011110011
1100001100
1100011101
1100101111
1100110101
1100110110
1101100110
1101101011
1101101110
1101110001
1110000110
1110011110
1110110000
1111001011
1111111111
00010100011
00011011110
00101110110
00110001011
00110001100
00110010111
00110011110
00110111100
00111010010
01001000111
01011001101
01011111010
01100011101
01101011011
01101110001
01110001001
01110001110
01110111001
01111011011
01111101001
10011101110
10100110001
10111000110
10111001101
10111100110
11001101101
11010101010
11011100011
11011100110
11100101111
11100110011
000110001100
000110100100
000110111000
001001011000
001100011101
001110110000
011000001001
011100001101
011101001100
011111010011
100011000000
101000110101
101010111111
101100011101
110111001101
110111011011
111001101101
111011001100
0011101110011
1001110111001
1100111011100
1111001111111
1111010011000
00001101001000
11000110001100
11101001100011
11111001011111
001101110001001
11100010010110000
Code:
(* Wolfram code *)
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; LCSa = ConstantArray[0, nMp*(nMp - 1)/2]; base = 2; count = 0;
ic = 0; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; s1 = IntegerDigits[MpData[[ic]], base, intlen1]; s1 = Join[s1, s1];
 jc = 0; While[jc < nMp, jc++; If[ic < jc, intlen2 = Length[IntegerDigits[MpData[[jc]], base]]; s2 = IntegerDigits[IntegerReverse[MpData[[jc]],base], base, intlen2]; s2 = Join[s2, s2];
   cs = LongestCommonSubsequence[s1, s2];
   If[cs != {}, fd = cs; mc = 1; kc = 0; While[kc < count, kc++; If[LCSa[[kc]] == fd, mc = 0;];]; If[mc == 1, count++; LCSa[[count]] = fd;];];
];];];
lcs = ConstantArray[0, count]; kc = 0; While[kc < count, kc++; lcs[[kc]] = LCSa[[kc]];]; lcs = Sort[lcs];
kc = 0; While[kc < count, kc++; Print[IntegerString[lcs[[kc]], base]];]; Print[count];
Dobri is offline   Reply With Quote
Old 2022-10-18, 17:54   #24
Dobri
 
"ม้าไฟ"
May 2018

53410 Posts
Default

From a binary perspective, there are four thresholds at:
- 27 bits, 1111111111111111111111111112 = 134217727 > M134217689 (factored);
- 28 bits, 11111111111111111111111111112 = 268435455 > M268435399 (factored);
- 29 bits, 111111111111111111111111111112 = 536870911 > M536870909 (factored); and
- 30 bits, 1111111111111111111111111111112 = 1073741823 > M1073741789, https://www.mersenne.ca/exponent/1073741789 (factored).

By selecting a number of bits b and a number of LCSs c for concatenation, the product of
(the number of combinations of c LCSs in an LCS set) × (the number of permutations of c LCSs)
gives how many LCS concatenations could be tested for having b bits and giving a prime number for an exponent of a Mersenne number which remains unfactored/untested in the GIMPS database.

This, of course, could be attempted only IF (and this is a big IF) it is assumed that no new LCS (outside the current LCS set) would be needed for the construction of the exponent of the next Mersenne prime (if any).

Last fiddled with by Dobri on 2022-10-18 at 18:06
Dobri is offline   Reply With Quote
Old 2022-10-19, 21:44   #25
Dobri
 
"ม้าไฟ"
May 2018

10268 Posts
Default

Here is an illustration concerned with the previous post #24 at https://mersenneforum.org/showpost.p...2&postcount=24.

Let b = 27 and c = 3. The LCS set is the one obtained in post #21 at https://mersenneforum.org/showpost.p...5&postcount=21.

The LCS set generates only 27483 27-bit prime exponents in the interval (226 = 67108864, 227 = 134217728).
Note that the total number of 27-bit exponents is 3645744.

Among the generated exponents are all three known 27-bit exponents of Mersenne primes M74207281, M77232917, and M82589933.

The 27483 exponents are generated from the LCS set and saved in a DAT file (see the attached ZIP file) with the Wolfram code shown below.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "LCSb27c3.dat";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; LCSa = ConstantArray[0, nMp*(nMp - 1)/2]; base = 2; count = 0;
ic = 0; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; s1 = IntegerDigits[MpData[[ic]], base, intlen1];
 jc = 0; While[jc < nMp, jc++; If[ic < jc, intlen2 = Length[IntegerDigits[MpData[[jc]], base]]; s2 = IntegerDigits[MpData[[jc]], base, intlen2];
   cs = LongestCommonSubsequence[s1, s2];
   If[cs != {}, fd = cs; mc = 1; kc = 0; While[kc < count, kc++; If[LCSa[[kc]] == fd, mc = 0;];]; If[mc == 1, count++; LCSa[[count]] = fd;];];
   ];];];
lcs = ConstantArray[0, count]; kc = 0; While[kc < count, kc++; lcs[[kc]] = LCSa[[kc]];]; lcs = Sort[lcs];

base = 2; MnLength = 27; countp = 0; Mna = ConstantArray[0, count^3];
ic = 0; While[ic < count, ic++; s1 = lcs[[ic]];
 jc = 0; While[jc < count, jc++; s2 = lcs[[jc]];
  kc = 0; While[kc < count, kc++; s3 = lcs[[kc]];
   Mns = Join[s1, s2, s3]; Mnl = Length[Mns]; 
   If[(Mnl == MnLength) && (Mns[[1]] == 1) && (Mns[[Mnl]] == 1),
    Mni = FromDigits[Mns, base]; 
    If[PrimeQ[Mni] == True, countp++; Mna[[countp]] = Mni;];
    ];];];];

Mna2 = ConstantArray[0, countp]; kc = 0; While[kc < countp, kc++; Mna2[[kc]] = Mna[[kc]]]; Mna2 = Sort[Mna2];
countp2 = 0; kc = 0; lc = 0; While[(kc < countp) && (lc < countp), kc++; lc++; countp2++; Mna2[[kc]] = Mna2[[lc]]; While[(lc < countp) && (Mna2[[lc]] == Mna2[[lc + 1]]), lc++;];];
Mna3 = ConstantArray[0, countp2]; kc = 0; While[kc < countp2, kc++; Mna3[[kc]] = Mna2[[kc]]];

Print[countp2];
Export[fname, Mna3]
Attached Files
File Type: zip LCSb27c3.zip (62.3 KB, 38 views)
Dobri is offline   Reply With Quote
Old 2022-10-19, 21:59   #26
chalsall
If I May
 
chalsall's Avatar
 
"Chris Halsall"
Sep 2002
Barbados

261568 Posts
Default

Quote:
Originally Posted by Dobri View Post
Here is an illustration concerned with the previous post #24...
Wow. Pretty graphs. And lots of complicated maths and code.

Presume I'm dumber than bricks...

What are you trying to tell me? Sincere question.
chalsall is offline   Reply With Quote
Old 2022-10-19, 22:06   #27
Dobri
 
"ม้าไฟ"
May 2018

2·3·89 Posts
Default

Quote:
Originally Posted by chalsall View Post
What are you trying to tell me? Sincere question.
The exponent of M52 (if any) could possibly be among the 27483 prime exponents generated from the LCS set based on the 51 known exponents of Mersenne primes.

Last fiddled with by Dobri on 2022-10-19 at 22:08
Dobri is offline   Reply With Quote
Old 2022-10-19, 22:22   #28
chalsall
If I May
 
chalsall's Avatar
 
"Chris Halsall"
Sep 2002
Barbados

2×112×47 Posts
Default

Quote:
Originally Posted by Dobri View Post
The exponent of M52 (if any) could possibly be among the 27483 prime exponents generated from the LCS set based on the 51 known exponents of Mersenne primes.
Could you please expand on this claim? It makes no sense as currently stated. But, then, this is what we expect from you et al.

Most of us here are rather serious people. Scientific Method and all of that...
chalsall is offline   Reply With Quote
Old 2022-10-19, 22:41   #29
Dobri
 
"ม้าไฟ"
May 2018

21616 Posts
Default

Quote:
Originally Posted by chalsall View Post
Could you please expand on this claim? It makes no sense as currently stated. But, then, this is what we expect from you et al.

Most of us here are rather serious people. Scientific Method and all of that...
The thread considers the similarities among the exponents of known Mersenne primes in terms of binary (base-2) largest common subsequences (LCSs) among pairs of exponents.
It is a combination of the art of statistics and graph theory.
Dobri is offline   Reply With Quote
Old 2022-10-19, 22:42   #30
kriesel
 
kriesel's Avatar
 
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest

32×11×79 Posts
Default

Quote:
Originally Posted by Dobri View Post
The LCS set generates only 27483 27-bit prime exponents in the interval (226 = 67108864, 227 = 134217728).
Note that the total number of 27-bit (prime) exponents is 3645744.

Among the generated exponents are all three known 27-bit exponents of Mersenne primes M74207281, M77232917, and M82589933.
First time primality testing is complete up to almost 111M, ~65% and some has been completed higher, let's suppose ~70% overall. Also some have found factors (perhaps up to ~65% of the remaining ~30%) which might leave roughly 0.35*0.30*27483 ~ 2886 needing primality testing or more factoring effort.

After filtering for both of those considerations, how many of the 27483 candidates remain as not yet shown composite or prime, and which ones?

(GIMPS has not yet found a new Mersenne prime as a result of double-checking.)

Is there any sound basis to expect common subsequences to reoccur at greater frequency than random chance would provide, or is this in effect a lengthy and ornate exercise of what RDS might call numerology?
A way to test that might be the following: remove one of the known Mp in the 27 bit range from the process of re-generating the LCS and candidate sets. Is the removed Mp still in the resulting candidate set?
Can it pass that test if a different Mp in the range is omitted from the process instead? How about the third?
If it can be demonstrated to pass all three such tests, a case might be made for a little higher priority on factoring and testing the survivors.

Last fiddled with by kriesel on 2022-10-19 at 23:16
kriesel is offline   Reply With Quote
Old 2022-10-19, 22:46   #31
chalsall
If I May
 
chalsall's Avatar
 
"Chris Halsall"
Sep 2002
Barbados

2·112·47 Posts
Default

Quote:
Originally Posted by Dobri View Post
It is a combination of the art of statistics and graph theory.
Are you a student of either of these disciplines?

I find it useful to review the submissions of many. It keeps me on my toes and ensures I am still relevant.

To be frank...

I would not accept you as a student. And would fire you if you were an employee.

There's just no "there there".
chalsall is offline   Reply With Quote
Old 2022-10-19, 22:49   #32
charybdis
 
charybdis's Avatar
 
Apr 2020

3×353 Posts
Default

Quote:
Originally Posted by Dobri View Post
It is a combination of the art of statistics and graph theory.
I know a fair amount about graph theory and I can't see any of it in this thread. Not much in the way of statistics either. Lots of numerology though.
charybdis is offline   Reply With Quote
Old 2022-10-19, 22:54   #33
Dobri
 
"ม้าไฟ"
May 2018

10268 Posts
Default

Quote:
Originally Posted by kriesel View Post
After filtering for both of those considerations, how many of the 27483 candidates remain as not yet shown composite or prime, and which ones?
I could try to check online with a simple Wolfram code how many of the LCS-generated exponents remain unfactored/untested in the GIMPS database.
However, my concern is not to congest the GIMPS server, so I may run the code with delays between the server requests and it would take some time before collecting the data.
Dobri is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Mersenne prime exponents that are also Sophie Germain primes carpetpool Miscellaneous Math 5 2022-10-19 01:44
Additive Properties of the Exponents of Known Mersenne Primes Dobri Dobri 3 2021-10-05 06:56
Observations of Wieferich primes and Wieferich-1 friendly club hansl Math 3 2020-09-02 10:40
Sophie-Germain primes as Mersenne exponents ProximaCentauri Miscellaneous Math 15 2014-12-25 14:26
Assorted formulas for exponents of Mersenne primes Lee Yiyuan Miscellaneous Math 60 2011-03-01 12:22

All times are UTC. The time now is 04:22.


Fri Jul 7 04:22:07 UTC 2023 up 323 days, 1:50, 0 users, load averages: 1.74, 1.66, 1.54

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔