mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Hardware > GPU Computing

Reply
 
Thread Tools
Old 2018-12-30, 13:32   #34
jasonp
Tribal Bullet
 
jasonp's Avatar
 
Oct 2004

DED16 Posts
Default

Quote:
Originally Posted by jasonp View Post
I can also provide non-power-of-two transforms that use the Winograd algorithm. How can we go about finding non-power-of-two roots of 2 by e.g. augmenting the iterated Tonelli-Shanks approach? Would that multiply the number of such roots available?
To jot this down for posterity, the answer to this is embarrassingly simple: to find an Nth root of two modulo p where N>2, just find the roots (if any) of x^N-2 in the field of polynomials with coefficients modulo p. I've been using Cantor-Zassenhaus code for years that does this, and never made the connection.

For the sake of completeness, here are the 32-bit primes that allow a DWT of largest size when including powers of 3,5,7:
Code:
p 2118090241 primroot 13 factors 2 2 2 2 2 2 2 2 2 3 3 5 7 23 571 dwt-root 348785556 order 80640 : 2 2 2 2 2 2 2 2 3 3 5 7
p 2247843151 primroot 13 factors 2 3 3 3 3 5 5 7 7 47 241 dwt-root 969636289 order 198450 : 2 3 3 3 3 5 5 7 7
p 2273745601 primroot 47 factors 2 2 2 2 2 2 3 3 3 5 5 7 73 103 dwt-root 1801095565 order 302400 : 2 2 2 2 2 2 3 3 3 5 5 7
p 2683625473 primroot 15 factors 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 11 1103 dwt-root 1165668607 order 221184 : 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
p 2913750001 primroot 11 factors 2 2 2 2 3 3 5 5 5 5 5 5 5 7 37 dwt-root 2357374036 order 112500 : 2 2 3 3 5 5 5 5 5
p 2927769601 primroot 59 factors 2 2 2 2 2 2 2 2 2 2 2 3 5 5 7 7 389 dwt-root 2873724403 order 188160 : 2 2 2 2 2 2 2 2 3 5 7 7
p 2990991361 primroot 19 factors 2 2 2 2 2 2 2 2 2 2 2 3 5 7 7 1987 dwt-root 1020298203 order 150528 : 2 2 2 2 2 2 2 2 2 2 3 7 7
p 3275037361 primroot 13 factors 2 2 2 2 3 3 3 3 3 5 7 41 587 dwt-root 2866099729 order 136080 : 2 2 2 2 3 3 3 3 3 5 7

Last fiddled with by jasonp on 2018-12-31 at 01:09
jasonp is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
128 bit integer division in CUDA? cseizert GPU Computing 8 2016-11-27 15:41
Non-power-of-two FFTs jasonp Computer Science & Computational Number Theory 15 2014-06-10 14:49
P95 PrimeNet causes BSOD; small FFTs, large FFTs, and blend test don't KarateF22 PrimeNet 16 2013-10-28 00:34
In Place Large FFTs Failure nwb Information & Answers 2 2011-07-08 16:04
gmp-ecm and FFTs dave_dm Factoring 9 2004-09-04 11:47

All times are UTC. The time now is 15:01.


Fri Jul 7 15:01:43 UTC 2023 up 323 days, 12:30, 0 users, load averages: 1.29, 1.21, 1.15

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔