 mersenneforum.org Status of Wagstaff testing? and testing Mersenne primes for Wagstaff-ness
 Register FAQ Search Today's Posts Mark Forums Read  2018-11-23, 13:19 #221 axn   Jun 2003 4,591 Posts ... and another one Code: ECM found a factor in curve #10, stage #2 Sigma=7210635612416542, B1=250000, B2=25000000. 2^35677+1 has a factor: 1174478776290172030409 (ECM curve 10, B1=250000, B2=25000000) ECM found a factor in curve #38, stage #2 Sigma=1699163987306510, B1=250000, B2=25000000. 2^35677+1 has a factor: 4519369329719894060013787 (ECM curve 38, B1=250000, B2=25000000) Cofactor is a probable prime! Thus (2^35677+1)/3 = 1174478776290172030409 · 4519369329719894060013787 · PRP10694   2018-11-23, 14:49   #222
paulunderwood

Sep 2002
Database er0rr

2·7·229 Posts Quote:
 Originally Posted by axn Code: ECM found a factor in curve #10, stage #2 Sigma=7210635612416542, B1=250000, B2=25000000. 2^35677+1 has a factor: 1174478776290172030409 (ECM curve 10, B1=250000, B2=25000000) ECM found a factor in curve #38, stage #2 Sigma=1699163987306510, B1=250000, B2=25000000. 2^35677+1 has a factor: 4519369329719894060013787 (ECM curve 38, B1=250000, B2=25000000) Cofactor is a probable prime! Thus (2^35677+1)/3 = 1174478776290172030409 · 4519369329719894060013787 · PRP10694
Congrats Code:
time ./pfgw64 -k -f0 -od -q"(2^35677+1)/3/1174478776290172030409/4519369329719894060013787" | ../../coding/gwnum/hybrid - 1 2 35677 1

Testing (x + 2)^(n + 1) == 7 (mod n, x^2 - x + 1)...
Likely prime!

real	0m1.115s
user	0m0.900s
sys	0m0.036s   2018-11-23, 16:30 #223 axn   Jun 2003 459110 Posts ... and another one Code: ECM found a factor in curve #2, stage #1 Sigma=461605036619020, B1=250000, B2=25000000. 2^35851+1 has a factor: 54919454473787 (ECM curve 2, B1=250000, B2=25000000) ECM found a factor in curve #111, stage #2 Sigma=2529484593925455, B1=250000, B2=25000000. 2^35851+1 has a factor: 1383891629171890065880777 (ECM curve 111, B1=250000, B2=25000000) Cofactor is a probable prime! (2^35851+1)/3 = 1184732147 · 54919454473787 · 1383891629171890065880777 · PRP10745   2018-11-23, 17:19   #224
paulunderwood

Sep 2002
Database er0rr

2×7×229 Posts Quote:
 Originally Posted by axn Code: ECM found a factor in curve #2, stage #1 Sigma=461605036619020, B1=250000, B2=25000000. 2^35851+1 has a factor: 54919454473787 (ECM curve 2, B1=250000, B2=25000000) ECM found a factor in curve #111, stage #2 Sigma=2529484593925455, B1=250000, B2=25000000. 2^35851+1 has a factor: 1383891629171890065880777 (ECM curve 111, B1=250000, B2=25000000) Cofactor is a probable prime! (2^35851+1)/3 = 1184732147 · 54919454473787 · 1383891629171890065880777 · PRP10745
Congrats again  Code:
time ./pfgw64 -k -f0 -od -q"(2^35851+1)/3/1184732147/54919454473787/1383891629171890065880777" | ../../coding/gwnum/hybrid - 1 2 35851 1

Testing (x + 2)^(n + 1) == 5 (mod n, x^2 + 1)...
Likely prime!

real	0m0.703s
user	0m0.888s
sys	0m0.008s   2018-11-24, 08:19   #225
axn

Jun 2003

4,591 Posts Quote:
 Originally Posted by axn Code: ECM found a factor in curve #1, stage #2 Sigma=7791075725288429, B1=250000, B2=25000000. 2^29027+1 has a factor: 275322488297 (ECM curve 1, B1=250000, B2=25000000) Cofactor is a probable prime! Thus (2^29027+1)/3 = 578914489 · 275322488297 · PRP8718
Quote:
 Originally Posted by axn Code: ECM found a factor in curve #390, stage #2 Sigma=7844702814691327, B1=250000, B2=25000000. 2^29437+1 has a factor: 24192412837755888627020059 (ECM curve 390, B1=250000, B2=25000000) Cofactor is a probable prime! (2^29437+1)/3 = 1177481 · 24192412837755888627020059 · PRP8830
These two are now proven (long time back... waiting for factordb to upload it)   2018-11-26, 19:40 #226 pinhodecarlos   "Carlos Pinho" Oct 2011 Milton Keynes, UK 33×132 Posts 26000-26500 done Code: 2^26017+1 has a factor: 628295109713251741345216912537379 (ECM curve 399, B1=250000, B2=25000000) 2^26021+1 has a factor: 20056522540355505315086219 (ECM curve 45, B1=250000, B2=25000000) 2^26041+1 has a factor: 131880107821847253060288953 (ECM curve 137, B1=250000, B2=25000000) 2^26041+1 has a factor: 5133597786411701095883 (ECM curve 3, B1=250000, B2=25000000) 2^26053+1 has a factor: 185255101747907703065087656691 (ECM curve 77, B1=250000, B2=25000000) 2^26053+1 has a factor: 4197165704910243992819 (ECM curve 101, B1=250000, B2=25000000) 2^26083+1 has a factor: 1118283355318735860011 (ECM curve 18, B1=250000, B2=25000000) 2^26083+1 has a factor: 55421847303778673 (ECM curve 2, B1=250000, B2=25000000) 2^26107+1 has a factor: 859528261417318515403 (ECM curve 44, B1=250000, B2=25000000) 2^26107+1 has a factor: 859528261417318515403 (ECM curve 6, B1=250000, B2=25000000) 2^26119+1 has a factor: 33599180088532561 (ECM curve 110, B1=250000, B2=25000000) 2^26119+1 has a factor: 33599180088532561 (ECM curve 6, B1=250000, B2=25000000) 2^26119+1 has a factor: 4069121945248193970904063489 (ECM curve 55, B1=250000, B2=25000000) 2^26119+1 has a factor: 4069121945248193970904063489 (ECM curve 77, B1=250000, B2=25000000) 2^26141+1 has a factor: 12302651387100233 (ECM curve 3, B1=250000, B2=25000000) 2^26177+1 has a factor: 2209568257662624159233 (ECM curve 110, B1=250000, B2=25000000) 2^26177+1 has a factor: 6699363221022123855592841 (ECM curve 139, B1=250000, B2=25000000) 2^26183+1 has a factor: 6326277643729527361793969 (ECM curve 137, B1=250000, B2=25000000) 2^26189+1 has a factor: 21939023541432339273131 (ECM curve 76, B1=250000, B2=25000000) 2^26237+1 has a factor: 4940480327570136992401935019 (ECM curve 184, B1=250000, B2=25000000) 2^26249+1 has a factor: 61769675275297363243 (ECM curve 62, B1=250000, B2=25000000) 2^26263+1 has a factor: 27775488948006877565753 (ECM curve 70, B1=250000, B2=25000000) 2^26293+1 has a factor: 5178618228283053971 (ECM curve 15, B1=250000, B2=25000000) 2^26297+1 has a factor: 331056202075107398295261259 (ECM curve 28, B1=250000, B2=25000000) 2^26297+1 has a factor: 336250445903171 (ECM curve 2, B1=250000, B2=25000000) 2^26321+1 has a factor: 45467342717607470637587 (ECM curve 2, B1=250000, B2=25000000) 2^26393+1 has a factor: 182532853384830323 (ECM curve 2, B1=250000, B2=25000000) 2^26399+1 has a factor: 2527029406443001360675782573227 (ECM curve 515, B1=250000, B2=25000000) 2^26399+1 has a factor: 7913514683358829152208219 (ECM curve 3, B1=250000, B2=25000000) 2^26417+1 has a factor: 62150979840284417056493607362041 (ECM curve 231, B1=250000, B2=25000000) 2^26423+1 has a factor: 872930940764728645666579 (ECM curve 7, B1=250000, B2=25000000) 2^26431+1 has a factor: 4775290088417746293443 (ECM curve 7, B1=250000, B2=25000000) 2^26437+1 has a factor: 1287872173435586759323 (ECM curve 155, B1=250000, B2=25000000) 2^26437+1 has a factor: 1287872173435586759323 (ECM curve 98, B1=250000, B2=25000000) 2^26479+1 has a factor: 1504735026754535267 (ECM curve 18, B1=250000, B2=25000000) 2^26479+1 has a factor: 1504735026754535267 (ECM curve 287, B1=250000, B2=25000000) 2^26489+1 has a factor: 31055541621204479789435950003 (ECM curve 378, B1=250000, B2=25000000) 2^26489+1 has a factor: 5601166359596957819 (ECM curve 6, B1=250000, B2=25000000) 2^26497+1 has a factor: 442348719449699348137687049 (ECM curve 424, B1=250000, B2=25000000)   2018-11-28, 16:17 #227 axn   Jun 2003 4,591 Posts 35000-37000. Not all of it is reported to factordb. Code: 2^35023+1 = 113183376254043141161 2^35059+1 = 122100260976161936953 2^35059+1 = 5081250871604071390846834931 2^35081+1 = 42152949521270544720121 2^35083+1 = 46237943078921329470331 2^35099+1 = 1330412517631594162811 2^35107+1 = 9928924318289607289 2^35111+1 = 332188260769 2^35111+1 = 5020413836529499 2^35111+1 = 84114660640714864610704172014550771 2^35117+1 = 224034332481330219209 2^35117+1 = 370749342883 2^35129+1 = 40671179984315413051 2^35141+1 = 193910602584159151907 2^35149+1 = 1570482697579 2^35149+1 = 5552794488958059617 2^35149+1 = 94748900554963 2^35159+1 = 170014297293457 2^35221+1 = 212128656885735673 2^35221+1 = 2310054119427673 2^35221+1 = 77348454012545842284065592464509187 2^35227+1 = 522224860125658870711323721 2^35251+1 = 531468250524618163 2^35251+1 = 65905552225620396770969 2^35257+1 = 84237223139 2^35281+1 = 23561017638982590006455257074049 2^35281+1 = 2388708612307531 2^35281+1 = 723905516838433 2^35291+1 = 366926718925073711771 2^35311+1 = 20311032643556721673 2^35317+1 = 185952660922694115011 2^35317+1 = 57941635273 2^35317+1 = 7595806110725113 2^35317+1 = 808832383226407913382001 2^35317+1 = 924413349087665689963 2^35323+1 = 1158266403574290489148692787 2^35327+1 = 15861087845131 2^35327+1 = 339986992508954715068221152957883 2^35419+1 = 7123371688953535409899575162977 2^35423+1 = 120634278827563257315011 2^35437+1 = 1326826778122120195928088619 2^35447+1 = 166594150747018714502197187 2^35447+1 = 1829477324478848226067 2^35461+1 = 599811705298988911307 2^35509+1 = 330303349230688544092512209 2^35531+1 = 410890099257097 2^35533+1 = 286781794840618937 2^35573+1 = 198875338699 2^35573+1 = 76965173633 2^35591+1 = 59278826015269387547 2^35617+1 = 83719614027791626580103817 2^35671+1 = 3676508930160410422569353 2^35677+1 = 1174478776290172030409 2^35677+1 = 4519369329719894060013787 2^35729+1 = 11221428467401 2^35731+1 = 301454157409 2^35747+1 = 424807296153399643459 2^35753+1 = 9833561824259 2^35759+1 = 285651750017440388794327184819 2^35759+1 = 573620060003 2^35771+1 = 538309462516863571 2^35801+1 = 536982295291368094245580771510325003 2^35809+1 = 2039488914148187993 2^35831+1 = 10176242338242543169 2^35831+1 = 1056205199655132118582241 2^35831+1 = 1676614447177907 2^35837+1 = 17607815123702487186134209 2^35837+1 = 214243621506777271889947 2^35837+1 = 7053251225616658999496547429053194571 2^35851+1 = 1383891629171890065880777 2^35851+1 = 54919454473787 2^35869+1 = 9932173231867 2^35879+1 = 58508597140221097 2^35897+1 = 23665958656417027977414033521 2^35897+1 = 390126898730394569 2^35923+1 = 252955049935486907 2^35933+1 = 238587570463524141962563 2^35951+1 = 14154366526626523289 2^35951+1 = 457540284625947517811298761 2^35951+1 = 63641949967735689569 2^35963+1 = 32096378846064876121 2^35969+1 = 123351271295739759349144777 2^35969+1 = 679299672584947 2^35993+1 = 7409860505483353 2^35993+1 = 8529379072805540266448233 2^36011+1 = 325036680207277651 2^36011+1 = 34271946340058389293421577 2^36013+1 = 19836518047817753795657 2^36017+1 = 134275137380776133473249012507 2^36061+1 = 1228607914303348144264240427 2^36061+1 = 621725967557322227 2^36067+1 = 1439002616132767805892453953 2^36067+1 = 165532812644249 2^36073+1 = 150085079624224771457 2^36097+1 = 576403976273941124833 2^36107+1 = 93109339819051849 2^36131+1 = 516273598430455433 2^36131+1 = 70043565369613924747 2^36137+1 = 104062202277266472233 2^36151+1 = 158695587499 2^36161+1 = 164299973820272891 2^36209+1 = 22515145857367084547 2^36217+1 = 7112551120199282411 2^36229+1 = 1233776075773010201 2^36251+1 = 2536244699859780305881 2^36319+1 = 63907929223829294904575617 2^36341+1 = 1890670883762627 2^36341+1 = 25866531152475940335125831531 2^36341+1 = 4074672053346216578613068819 2^36373+1 = 308756722823171502965753 2^36389+1 = 10913417212344757619 2^36389+1 = 840498081116297 2^36433+1 = 5163870767108471777 2^36433+1 = 538347196747 2^36451+1 = 105553581258909331 2^36451+1 = 8279212954171 2^36457+1 = 21422791117896457 2^36467+1 = 3426110538122843 2^36473+1 = 232877752734045451 2^36473+1 = 39553477578619901169307219 2^36479+1 = 1656256823245894937 2^36479+1 = 33870616158305418891131 2^36551+1 = 64240001943585886102793 2^36559+1 = 10906743102656195102467 2^36571+1 = 1546411998474267593 2^36583+1 = 2407209361035002089 2^36599+1 = 335141857392877792552800320115523 2^36607+1 = 56109203446684836103966333390273 2^36629+1 = 374881991273 2^36629+1 = 86147123433826617641 2^36653+1 = 92624194046918357608861382805992497 2^36677+1 = 155494995915451821014690881 2^36683+1 = 297225455443920180251 2^36683+1 = 56429825731 2^36691+1 = 113599597854846121 2^36691+1 = 147611335469240199560209 2^36709+1 = 3563439321965963771 2^36713+1 = 21895318418062336952051 2^36713+1 = 63051090132131 2^36713+1 = 94130434511908956913 2^36739+1 = 13302000107046451 2^36761+1 = 27802425541811 2^36779+1 = 10694783157446139957212312283007241 2^36781+1 = 3107786068546457 2^36791+1 = 1697152292227030627081 2^36791+1 = 320299932830262659 2^36809+1 = 160239957139 2^36809+1 = 2895485669441367276097393 2^36821+1 = 3784645085803 2^36821+1 = 91194520656277173482107 2^36833+1 = 361414478796803 2^36833+1 = 9010185614956079339 2^36847+1 = 11989062800607888058633 2^36847+1 = 17455251492458150529131 2^36847+1 = 3973327193723 2^36857+1 = 6077049154912019783593585687283 2^36887+1 = 33899737186976594086855201 2^36899+1 = 10130794613281 2^36899+1 = 12632969385867659 2^36901+1 = 37891440257273 2^36913+1 = 196321550950142097643 2^36931+1 = 752337650641 2^36931+1 = 964926802350402223417 2^36943+1 = 44208867677630448846065611 2^36943+1 = 613936728299 2^36979+1 = 80640886583732873 2^36997+1 = 105202897796309030699   2018-12-13, 18:04 #228 DukeBG   Mar 2018 3·43 Posts Factors that I've found added in FDB (from about last week), most likely from GP2's t40: 2^3089+1: P35+C879 2^3109+1: P35+P36+P44+C807 (nice!) 2^3167+1: P35+C890 Looks like t40 is going fairly well!   2018-12-13, 20:06   #229
GP2

Sep 2003

257810 Posts Quote:
 Originally Posted by DukeBG Factors that I've found added in FDB (from about last week), most likely from GP2's t40:
Yes, that was me. However, I will probably pause the t40 ECM soon because spot prices in the cloud are starting to rise, as they usually do at this time of year. Presumably for online holiday shopping, and maybe also corporations and accounting firms doing some quarter-end and year-end financial crunching.   2018-12-13, 23:19 #230 GP2   Sep 2003 257810 Posts (2^1430131+1)/(3*356468732537*36519993971459) is a 430487-digit PRP Some background: The factoring efforts from 2013 stopped when a first factor was found, because they were mainly interested in just eliminating potential Wagstaff primes. So there are a lot of second-and-higher factors still waiting to be found, some of them actually quite small. I redid the range from 1M to 2M and found more than 16,000 new factors. One of them resulted in the above PRP. I'm going on work on ranges below 1M next. So the Gerbicz cofactor-compositeness test was really useful once again, because I did the original PRP test on (2^1430131+1)/3 (with no divisors) several months ago. The new cofactors were checked very quickly, in an afternoon on a single core, whereas redoing all the PRP tests would have taken very much longer.   2018-12-13, 23:54   #231
paulunderwood

Sep 2002
Database er0rr

2×7×229 Posts Quote:
 Originally Posted by GP2 (2^1430131+1)/(3*356468732537*36519993971459) is a 430487-digit PRP Some background: The factoring efforts from 2013 stopped when a first factor was found, because they were mainly interested in just eliminating potential Wagstaff primes. So there are a lot of second-and-higher factors still waiting to be found, some of them actually quite small. I redid the range from 1M to 2M and found more than 16,000 new factors. One of them resulted in the above PRP. I'm going on work on ranges below 1M next. So the Gerbicz cofactor-compositeness test was really useful once again, because I did the original PRP test on (2^1430131+1)/3 (with no divisors) several months ago. The new cofactors were checked very quickly, in an afternoon on a single core, whereas redoing all the PRP tests would have taken very much longer.
Congrats to you for the find and to Robert for his method in action,

Code:
time ./pfgw64 -k -f0 -od -q"(2^1430131+1)/(3*356468732537*36519993971459)" | ../../coding/gwnum/hybrid - 1 2 1430131 1

Testing (x + 1)^(n + 1) == 2 + 5 (mod n, x^2 - 5*x + 1)...
Likely prime!

real	20m31.553s
user	43m12.772s
sys	4m21.160s   Thread Tools Show Printable Version Email this Page Similar Threads Thread Thread Starter Forum Replies Last Post a nicol Math 3 2017-11-15 20:23 ryanp Wagstaff PRP Search 26 2013-10-18 01:33 Batalov GMP-ECM 9 2012-08-24 10:26 diep Math 27 2010-01-13 20:18 eepiccolo Math 6 2006-03-28 20:53

All times are UTC. The time now is 06:35.

Thu May 28 06:35:48 UTC 2020 up 64 days, 4:08, 1 user, load averages: 1.60, 1.54, 1.45