mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Wagstaff PRP Search

Reply
 
Thread Tools
Old 2018-11-23, 13:19   #221
axn
 
axn's Avatar
 
Jun 2003

4,591 Posts
Default ... and another one

Code:
ECM found a factor in curve #10, stage #2
Sigma=7210635612416542, B1=250000, B2=25000000.
2^35677+1 has a factor: 1174478776290172030409 (ECM curve 10, B1=250000, B2=25000000)
ECM found a factor in curve #38, stage #2
Sigma=1699163987306510, B1=250000, B2=25000000.
2^35677+1 has a factor: 4519369329719894060013787 (ECM curve 38, B1=250000, B2=25000000)
Cofactor is a probable prime!
Thus (2^35677+1)/3 = 1174478776290172030409 · 4519369329719894060013787 · PRP10694
axn is offline   Reply With Quote
Old 2018-11-23, 14:49   #222
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

2·7·229 Posts
Default

Quote:
Originally Posted by axn View Post
Code:
ECM found a factor in curve #10, stage #2
Sigma=7210635612416542, B1=250000, B2=25000000.
2^35677+1 has a factor: 1174478776290172030409 (ECM curve 10, B1=250000, B2=25000000)
ECM found a factor in curve #38, stage #2
Sigma=1699163987306510, B1=250000, B2=25000000.
2^35677+1 has a factor: 4519369329719894060013787 (ECM curve 38, B1=250000, B2=25000000)
Cofactor is a probable prime!
Thus (2^35677+1)/3 = 1174478776290172030409 · 4519369329719894060013787 · PRP10694
Congrats

Code:
time ./pfgw64 -k -f0 -od -q"(2^35677+1)/3/1174478776290172030409/4519369329719894060013787" | ../../coding/gwnum/hybrid - 1 2 35677 1
                                               
Testing (x + 2)^(n + 1) == 7 (mod n, x^2 - x + 1)...
Likely prime!

real	0m1.115s
user	0m0.900s
sys	0m0.036s
paulunderwood is offline   Reply With Quote
Old 2018-11-23, 16:30   #223
axn
 
axn's Avatar
 
Jun 2003

459110 Posts
Default ... and another one

Code:
ECM found a factor in curve #2, stage #1
Sigma=461605036619020, B1=250000, B2=25000000.
2^35851+1 has a factor: 54919454473787 (ECM curve 2, B1=250000, B2=25000000)
ECM found a factor in curve #111, stage #2
Sigma=2529484593925455, B1=250000, B2=25000000.
2^35851+1 has a factor: 1383891629171890065880777 (ECM curve 111, B1=250000, B2=25000000)
Cofactor is a probable prime!
(2^35851+1)/3 = 1184732147 · 54919454473787 · 1383891629171890065880777 · PRP10745
axn is offline   Reply With Quote
Old 2018-11-23, 17:19   #224
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

2×7×229 Posts
Default

Quote:
Originally Posted by axn View Post
Code:
ECM found a factor in curve #2, stage #1
Sigma=461605036619020, B1=250000, B2=25000000.
2^35851+1 has a factor: 54919454473787 (ECM curve 2, B1=250000, B2=25000000)
ECM found a factor in curve #111, stage #2
Sigma=2529484593925455, B1=250000, B2=25000000.
2^35851+1 has a factor: 1383891629171890065880777 (ECM curve 111, B1=250000, B2=25000000)
Cofactor is a probable prime!
(2^35851+1)/3 = 1184732147 · 54919454473787 · 1383891629171890065880777 · PRP10745
Congrats again

Code:
time ./pfgw64 -k -f0 -od -q"(2^35851+1)/3/1184732147/54919454473787/1383891629171890065880777" | ../../coding/gwnum/hybrid - 1 2 35851 1
                                               
Testing (x + 2)^(n + 1) == 5 (mod n, x^2 + 1)...
Likely prime!

real	0m0.703s
user	0m0.888s
sys	0m0.008s
paulunderwood is offline   Reply With Quote
Old 2018-11-24, 08:19   #225
axn
 
axn's Avatar
 
Jun 2003

4,591 Posts
Default

Quote:
Originally Posted by axn View Post
Code:
ECM found a factor in curve #1, stage #2
Sigma=7791075725288429, B1=250000, B2=25000000.
2^29027+1 has a factor: 275322488297 (ECM curve 1, B1=250000, B2=25000000)
Cofactor is a probable prime!
Thus (2^29027+1)/3 = 578914489 · 275322488297 · PRP8718
Quote:
Originally Posted by axn View Post
Code:
ECM found a factor in curve #390, stage #2
Sigma=7844702814691327, B1=250000, B2=25000000.
2^29437+1 has a factor: 24192412837755888627020059 (ECM curve 390, B1=250000, B2=25000000)
Cofactor is a probable prime!
(2^29437+1)/3 = 1177481 · 24192412837755888627020059 · PRP8830
These two are now proven (long time back... waiting for factordb to upload it)
axn is offline   Reply With Quote
Old 2018-11-26, 19:40   #226
pinhodecarlos
 
pinhodecarlos's Avatar
 
"Carlos Pinho"
Oct 2011
Milton Keynes, UK

33×132 Posts
Default

26000-26500 done


Code:
2^26017+1 has a factor: 628295109713251741345216912537379 (ECM curve 399, B1=250000, B2=25000000)
2^26021+1 has a factor: 20056522540355505315086219 (ECM curve 45, B1=250000, B2=25000000)
2^26041+1 has a factor: 131880107821847253060288953 (ECM curve 137, B1=250000, B2=25000000)
2^26041+1 has a factor: 5133597786411701095883 (ECM curve 3, B1=250000, B2=25000000)
2^26053+1 has a factor: 185255101747907703065087656691 (ECM curve 77, B1=250000, B2=25000000)
2^26053+1 has a factor: 4197165704910243992819 (ECM curve 101, B1=250000, B2=25000000)
2^26083+1 has a factor: 1118283355318735860011 (ECM curve 18, B1=250000, B2=25000000)
2^26083+1 has a factor: 55421847303778673 (ECM curve 2, B1=250000, B2=25000000)
2^26107+1 has a factor: 859528261417318515403 (ECM curve 44, B1=250000, B2=25000000)
2^26107+1 has a factor: 859528261417318515403 (ECM curve 6, B1=250000, B2=25000000)
2^26119+1 has a factor: 33599180088532561 (ECM curve 110, B1=250000, B2=25000000)
2^26119+1 has a factor: 33599180088532561 (ECM curve 6, B1=250000, B2=25000000)
2^26119+1 has a factor: 4069121945248193970904063489 (ECM curve 55, B1=250000, B2=25000000)
2^26119+1 has a factor: 4069121945248193970904063489 (ECM curve 77, B1=250000, B2=25000000)
2^26141+1 has a factor: 12302651387100233 (ECM curve 3, B1=250000, B2=25000000)
2^26177+1 has a factor: 2209568257662624159233 (ECM curve 110, B1=250000, B2=25000000)
2^26177+1 has a factor: 6699363221022123855592841 (ECM curve 139, B1=250000, B2=25000000)
2^26183+1 has a factor: 6326277643729527361793969 (ECM curve 137, B1=250000, B2=25000000)
2^26189+1 has a factor: 21939023541432339273131 (ECM curve 76, B1=250000, B2=25000000)
2^26237+1 has a factor: 4940480327570136992401935019 (ECM curve 184, B1=250000, B2=25000000)
2^26249+1 has a factor: 61769675275297363243 (ECM curve 62, B1=250000, B2=25000000)
2^26263+1 has a factor: 27775488948006877565753 (ECM curve 70, B1=250000, B2=25000000)
2^26293+1 has a factor: 5178618228283053971 (ECM curve 15, B1=250000, B2=25000000)
2^26297+1 has a factor: 331056202075107398295261259 (ECM curve 28, B1=250000, B2=25000000)
2^26297+1 has a factor: 336250445903171 (ECM curve 2, B1=250000, B2=25000000)
2^26321+1 has a factor: 45467342717607470637587 (ECM curve 2, B1=250000, B2=25000000)
2^26393+1 has a factor: 182532853384830323 (ECM curve 2, B1=250000, B2=25000000)
2^26399+1 has a factor: 2527029406443001360675782573227 (ECM curve 515, B1=250000, B2=25000000)
2^26399+1 has a factor: 7913514683358829152208219 (ECM curve 3, B1=250000, B2=25000000)
2^26417+1 has a factor: 62150979840284417056493607362041 (ECM curve 231, B1=250000, B2=25000000)
2^26423+1 has a factor: 872930940764728645666579 (ECM curve 7, B1=250000, B2=25000000)
2^26431+1 has a factor: 4775290088417746293443 (ECM curve 7, B1=250000, B2=25000000)
2^26437+1 has a factor: 1287872173435586759323 (ECM curve 155, B1=250000, B2=25000000)
2^26437+1 has a factor: 1287872173435586759323 (ECM curve 98, B1=250000, B2=25000000)
2^26479+1 has a factor: 1504735026754535267 (ECM curve 18, B1=250000, B2=25000000)
2^26479+1 has a factor: 1504735026754535267 (ECM curve 287, B1=250000, B2=25000000)
2^26489+1 has a factor: 31055541621204479789435950003 (ECM curve 378, B1=250000, B2=25000000)
2^26489+1 has a factor: 5601166359596957819 (ECM curve 6, B1=250000, B2=25000000)
2^26497+1 has a factor: 442348719449699348137687049 (ECM curve 424, B1=250000, B2=25000000)
pinhodecarlos is online now   Reply With Quote
Old 2018-11-28, 16:17   #227
axn
 
axn's Avatar
 
Jun 2003

4,591 Posts
Default

35000-37000. Not all of it is reported to factordb.
Code:
2^35023+1 = 113183376254043141161
2^35059+1 = 122100260976161936953
2^35059+1 = 5081250871604071390846834931
2^35081+1 = 42152949521270544720121
2^35083+1 = 46237943078921329470331
2^35099+1 = 1330412517631594162811
2^35107+1 = 9928924318289607289
2^35111+1 = 332188260769
2^35111+1 = 5020413836529499
2^35111+1 = 84114660640714864610704172014550771
2^35117+1 = 224034332481330219209
2^35117+1 = 370749342883
2^35129+1 = 40671179984315413051
2^35141+1 = 193910602584159151907
2^35149+1 = 1570482697579
2^35149+1 = 5552794488958059617
2^35149+1 = 94748900554963
2^35159+1 = 170014297293457
2^35221+1 = 212128656885735673
2^35221+1 = 2310054119427673
2^35221+1 = 77348454012545842284065592464509187
2^35227+1 = 522224860125658870711323721
2^35251+1 = 531468250524618163
2^35251+1 = 65905552225620396770969
2^35257+1 = 84237223139
2^35281+1 = 23561017638982590006455257074049
2^35281+1 = 2388708612307531
2^35281+1 = 723905516838433
2^35291+1 = 366926718925073711771
2^35311+1 = 20311032643556721673
2^35317+1 = 185952660922694115011
2^35317+1 = 57941635273
2^35317+1 = 7595806110725113
2^35317+1 = 808832383226407913382001
2^35317+1 = 924413349087665689963
2^35323+1 = 1158266403574290489148692787
2^35327+1 = 15861087845131
2^35327+1 = 339986992508954715068221152957883
2^35419+1 = 7123371688953535409899575162977
2^35423+1 = 120634278827563257315011
2^35437+1 = 1326826778122120195928088619
2^35447+1 = 166594150747018714502197187
2^35447+1 = 1829477324478848226067
2^35461+1 = 599811705298988911307
2^35509+1 = 330303349230688544092512209
2^35531+1 = 410890099257097
2^35533+1 = 286781794840618937
2^35573+1 = 198875338699
2^35573+1 = 76965173633
2^35591+1 = 59278826015269387547
2^35617+1 = 83719614027791626580103817
2^35671+1 = 3676508930160410422569353
2^35677+1 = 1174478776290172030409
2^35677+1 = 4519369329719894060013787
2^35729+1 = 11221428467401
2^35731+1 = 301454157409
2^35747+1 = 424807296153399643459
2^35753+1 = 9833561824259
2^35759+1 = 285651750017440388794327184819
2^35759+1 = 573620060003
2^35771+1 = 538309462516863571
2^35801+1 = 536982295291368094245580771510325003
2^35809+1 = 2039488914148187993
2^35831+1 = 10176242338242543169
2^35831+1 = 1056205199655132118582241
2^35831+1 = 1676614447177907
2^35837+1 = 17607815123702487186134209
2^35837+1 = 214243621506777271889947
2^35837+1 = 7053251225616658999496547429053194571
2^35851+1 = 1383891629171890065880777
2^35851+1 = 54919454473787
2^35869+1 = 9932173231867
2^35879+1 = 58508597140221097
2^35897+1 = 23665958656417027977414033521
2^35897+1 = 390126898730394569
2^35923+1 = 252955049935486907
2^35933+1 = 238587570463524141962563
2^35951+1 = 14154366526626523289
2^35951+1 = 457540284625947517811298761
2^35951+1 = 63641949967735689569
2^35963+1 = 32096378846064876121
2^35969+1 = 123351271295739759349144777
2^35969+1 = 679299672584947
2^35993+1 = 7409860505483353
2^35993+1 = 8529379072805540266448233
2^36011+1 = 325036680207277651
2^36011+1 = 34271946340058389293421577
2^36013+1 = 19836518047817753795657
2^36017+1 = 134275137380776133473249012507
2^36061+1 = 1228607914303348144264240427
2^36061+1 = 621725967557322227
2^36067+1 = 1439002616132767805892453953
2^36067+1 = 165532812644249
2^36073+1 = 150085079624224771457
2^36097+1 = 576403976273941124833
2^36107+1 = 93109339819051849
2^36131+1 = 516273598430455433
2^36131+1 = 70043565369613924747
2^36137+1 = 104062202277266472233
2^36151+1 = 158695587499
2^36161+1 = 164299973820272891
2^36209+1 = 22515145857367084547
2^36217+1 = 7112551120199282411
2^36229+1 = 1233776075773010201
2^36251+1 = 2536244699859780305881
2^36319+1 = 63907929223829294904575617
2^36341+1 = 1890670883762627
2^36341+1 = 25866531152475940335125831531
2^36341+1 = 4074672053346216578613068819
2^36373+1 = 308756722823171502965753
2^36389+1 = 10913417212344757619
2^36389+1 = 840498081116297
2^36433+1 = 5163870767108471777
2^36433+1 = 538347196747
2^36451+1 = 105553581258909331
2^36451+1 = 8279212954171
2^36457+1 = 21422791117896457
2^36467+1 = 3426110538122843
2^36473+1 = 232877752734045451
2^36473+1 = 39553477578619901169307219
2^36479+1 = 1656256823245894937
2^36479+1 = 33870616158305418891131
2^36551+1 = 64240001943585886102793
2^36559+1 = 10906743102656195102467
2^36571+1 = 1546411998474267593
2^36583+1 = 2407209361035002089
2^36599+1 = 335141857392877792552800320115523
2^36607+1 = 56109203446684836103966333390273
2^36629+1 = 374881991273
2^36629+1 = 86147123433826617641
2^36653+1 = 92624194046918357608861382805992497
2^36677+1 = 155494995915451821014690881
2^36683+1 = 297225455443920180251
2^36683+1 = 56429825731
2^36691+1 = 113599597854846121
2^36691+1 = 147611335469240199560209
2^36709+1 = 3563439321965963771
2^36713+1 = 21895318418062336952051
2^36713+1 = 63051090132131
2^36713+1 = 94130434511908956913
2^36739+1 = 13302000107046451
2^36761+1 = 27802425541811
2^36779+1 = 10694783157446139957212312283007241
2^36781+1 = 3107786068546457
2^36791+1 = 1697152292227030627081
2^36791+1 = 320299932830262659
2^36809+1 = 160239957139
2^36809+1 = 2895485669441367276097393
2^36821+1 = 3784645085803
2^36821+1 = 91194520656277173482107
2^36833+1 = 361414478796803
2^36833+1 = 9010185614956079339
2^36847+1 = 11989062800607888058633
2^36847+1 = 17455251492458150529131
2^36847+1 = 3973327193723
2^36857+1 = 6077049154912019783593585687283
2^36887+1 = 33899737186976594086855201
2^36899+1 = 10130794613281
2^36899+1 = 12632969385867659
2^36901+1 = 37891440257273
2^36913+1 = 196321550950142097643
2^36931+1 = 752337650641
2^36931+1 = 964926802350402223417
2^36943+1 = 44208867677630448846065611
2^36943+1 = 613936728299
2^36979+1 = 80640886583732873
2^36997+1 = 105202897796309030699
axn is offline   Reply With Quote
Old 2018-12-13, 18:04   #228
DukeBG
 
Mar 2018

3·43 Posts
Default

Factors that I've found added in FDB (from about last week), most likely from GP2's t40:

2^3089+1: P35+C879
2^3109+1: P35+P36+P44+C807 (nice!)
2^3167+1: P35+C890

Looks like t40 is going fairly well!
DukeBG is offline   Reply With Quote
Old 2018-12-13, 20:06   #229
GP2
 
GP2's Avatar
 
Sep 2003

257810 Posts
Default

Quote:
Originally Posted by DukeBG View Post
Factors that I've found added in FDB (from about last week), most likely from GP2's t40:
Yes, that was me. However, I will probably pause the t40 ECM soon because spot prices in the cloud are starting to rise, as they usually do at this time of year. Presumably for online holiday shopping, and maybe also corporations and accounting firms doing some quarter-end and year-end financial crunching.
GP2 is offline   Reply With Quote
Old 2018-12-13, 23:19   #230
GP2
 
GP2's Avatar
 
Sep 2003

257810 Posts
Default

(2^1430131+1)/(3*356468732537*36519993971459) is a 430487-digit PRP

Some background:

The factoring efforts from 2013 stopped when a first factor was found, because they were mainly interested in just eliminating potential Wagstaff primes. So there are a lot of second-and-higher factors still waiting to be found, some of them actually quite small.

I redid the range from 1M to 2M and found more than 16,000 new factors. One of them resulted in the above PRP. I'm going on work on ranges below 1M next.

So the Gerbicz cofactor-compositeness test was really useful once again, because I did the original PRP test on (2^1430131+1)/3 (with no divisors) several months ago. The new cofactors were checked very quickly, in an afternoon on a single core, whereas redoing all the PRP tests would have taken very much longer.
GP2 is offline   Reply With Quote
Old 2018-12-13, 23:54   #231
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

2×7×229 Posts
Default

Quote:
Originally Posted by GP2 View Post
(2^1430131+1)/(3*356468732537*36519993971459) is a 430487-digit PRP

Some background:

The factoring efforts from 2013 stopped when a first factor was found, because they were mainly interested in just eliminating potential Wagstaff primes. So there are a lot of second-and-higher factors still waiting to be found, some of them actually quite small.

I redid the range from 1M to 2M and found more than 16,000 new factors. One of them resulted in the above PRP. I'm going on work on ranges below 1M next.

So the Gerbicz cofactor-compositeness test was really useful once again, because I did the original PRP test on (2^1430131+1)/3 (with no divisors) several months ago. The new cofactors were checked very quickly, in an afternoon on a single core, whereas redoing all the PRP tests would have taken very much longer.
Congrats to you for the find and to Robert for his method in action,

Code:
time ./pfgw64 -k -f0 -od -q"(2^1430131+1)/(3*356468732537*36519993971459)" | ../../coding/gwnum/hybrid - 1 2 1430131 1
                                               
Testing (x + 1)^(n + 1) == 2 + 5 (mod n, x^2 - 5*x + 1)...
Likely prime!

real	20m31.553s
user	43m12.772s
sys	4m21.160s
paulunderwood is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Testing Mersenne Primes with Elliptic Curves a nicol Math 3 2017-11-15 20:23
New Wagstaff PRP exponents ryanp Wagstaff PRP Search 26 2013-10-18 01:33
Hot tuna! -- a p75 and a p79 by Sam Wagstaff! Batalov GMP-ECM 9 2012-08-24 10:26
Statistical odds for prime in Wagstaff vs Mersenne diep Math 27 2010-01-13 20:18
Speed of P-1 testing vs. Trial Factoring testing eepiccolo Math 6 2006-03-28 20:53

All times are UTC. The time now is 06:35.

Thu May 28 06:35:48 UTC 2020 up 64 days, 4:08, 1 user, load averages: 1.60, 1.54, 1.45

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.