mersenneforum.org  

Go Back   mersenneforum.org > Great Internet Mersenne Prime Search > Hardware > GPU Computing

Reply
 
Thread Tools
Old 2018-06-05, 17:36   #23
jasonp
Tribal Bullet
 
jasonp's Avatar
 
Oct 2004

5·23·31 Posts
Default

I would think you could get useful work out of maybe a 2^22 root of two, not all the way to 2^28 like that thread used; there's also the option to use several (maybe 2-8) different moduli with CRT reconstruction, and that would be plenty to run LL all the way up to the current wavefront.

I can also provide non-power-of-two transforms that use the Winograd algorithm. How can we go about finding non-power-of-two roots of 2 by e.g. augmenting the iterated Tonelli-Shanks approach? Would that multiply the number of such roots available?

No need to contemplate billion-digit LL tests when consumer GPUs can't even fit one residue right now.

Last fiddled with by jasonp on 2018-06-05 at 17:39
jasonp is offline   Reply With Quote
Old 2018-06-05, 17:55   #24
Mysticial
 
Mysticial's Avatar
 
Sep 2016

22·5·19 Posts
Default

Quote:
Originally Posted by jasonp View Post
I would think you could get useful work out of maybe a 2^22 root of two, not all the way to 2^28 like that thread used; there's also the option to use several (maybe 2-8) different moduli with CRT reconstruction, and that would be plenty to run LL all the way up to the current wavefront.

I can also provide non-power-of-two transforms that use the Winograd algorithm. How can we go about finding non-power-of-two roots of 2 by e.g. augmenting the iterated Tonelli-Shanks approach? Would that multiply the number of such roots available?

No need to contemplate billion-digit LL tests when consumer GPUs can't even fit one residue right now.
Using more primes will increase the convolution size. But then you need to find multiple primes that have the sufficient roots-of-unity and roots-of-two. Typically, there will only be one or two primes that reach the largest transform length for a particular word size. If you need more, you'll need to start reducing the transform length. So these effects will partially cancel each other out.

If you increase the search space to transform lengths with many non-power-of-two factors, then it could give enough dimensions of freedom to find more suitable primes. But I don't know how much overhead Winograd's algorithm will add compared to emulating 64-bit arithmetic, or even double-single precision float FFT.
Mysticial is offline   Reply With Quote
Old 2018-06-11, 19:27   #25
jasonp
Tribal Bullet
 
jasonp's Avatar
 
Oct 2004

5×23×31 Posts
Default

I searched through the 30-bit primes and found quite a few that would be suitable for a NTT; all of the following have a root of two whose order is a large power of two and matches the order of the largest power-of-two root of unity modulo the prime:
Code:
p 22600001 primroot 04c8bae8 factors 2^21 5 5 11 dwt-root 008f1b9d order 2^21
p 22b00001 primroot 1889755b factors 2^20 3 5 37 dwt-root 20cf3916 order 2^20
p 23800001 primroot 158a82f1 factors 2^23 71 dwt-root 1efa1d96 order 2^23
p 23a00001 primroot 180eecaf factors 2^21 3 5 19 dwt-root 1e675b3f order 2^21
p 24100001 primroot 0e9595e6 factors 2^20 577 dwt-root 07c59f6d order 2^20
p 25e00001 primroot 01139d1b factors 2^21 3 101 dwt-root 00c2ad24 order 2^21
p 26200001 primroot 16692d18 factors 2^21 5 61 dwt-root 08b905b9 order 2^21
p 26800001 primroot 0d5e196d factors 2^23 7 11 dwt-root 1a3aa741 order 2^23
p 26a00001 primroot 234fdf92 factors 2^21 3 103 dwt-root 1a935819 order 2^21
p 27100001 primroot 0ab4f058 factors 2^20 5 5 5 5 dwt-root 106260cf order 2^20
p 27c00001 primroot 08c83b6c factors 2^22 3 53 dwt-root 035b3c19 order 2^22
p 28c00001 primroot 0e1f4c18 factors 2^22 163 dwt-root 1d204c71 order 2^22
p 2a600001 primroot 1f45b95c factors 2^21 3 113 dwt-root 0f3eefee order 2^21
p 2aa00001 primroot 15362e51 factors 2^21 11 31 dwt-root 177ad8d5 order 2^21
p 2ad00001 primroot 0f069c74 factors 2^20 5 137 dwt-root 1b4d3d3e order 2^20
p 2c200001 primroot 0e28187e factors 2^21 353 dwt-root 0a5266ac order 2^21
p 2c700001 primroot 0a361d1d factors 2^20 3 3 79 dwt-root 25d706dd order 2^20
p 2d000001 primroot 2c18f042 factors 2^24 3 3 5 dwt-root 0a489736 order 2^24
p 2df00001 primroot 01938851 factors 2^20 3 5 7 7 dwt-root 0971c5c8 order 2^20
p 2ee00001 primroot 0d9cd97a factors 2^21 3 5 5 5 dwt-root 04f4a141 order 2^21
p 2fa00001 primroot 14894b0f factors 2^21 3 127 dwt-root 2d0a271a order 2^21
p 2fb00001 primroot 23e1f07c factors 2^20 7 109 dwt-root 1004dbed order 2^20
p 2fd00001 primroot 06280117 factors 2^20 3 3 5 17 dwt-root 270d91f4 order 2^20
p 30d00001 primroot 040d960b factors 2^20 11 71 dwt-root 19b64592 order 2^20
p 31200001 primroot 07f3b74a factors 2^21 3 131 dwt-root 28303766 order 2^21
p 31b00001 primroot 03969c38 factors 2^20 3 5 53 dwt-root 017f4edd order 2^20
p 32b00001 primroot 32525f31 factors 2^20 811 dwt-root 1cb65e06 order 2^20
p 33700001 primroot 05eb3b37 factors 2^20 823 dwt-root 0e1ead7b order 2^20
p 34800001 primroot 05e26177 factors 2^23 3 5 7 dwt-root 26f88c2b order 2^23
p 34b00001 primroot 253b3b21 factors 2^20 3 281 dwt-root 0c040aec order 2^20
p 35800001 primroot 340422f0 factors 2^23 107 dwt-root 32d76a52 order 2^23
p 35a00001 primroot 070ff1f7 factors 2^21 3 11 13 dwt-root 114c150a order 2^21
p 36100001 primroot 34475648 factors 2^20 5 173 dwt-root 1985e108 order 2^20
p 36700001 primroot 328220c0 factors 2^20 13 67 dwt-root 2e3c5dfd order 2^20
p 36c00001 primroot 052f72f3 factors 2^22 3 73 dwt-root 14cbe41b order 2^22
p 36d00001 primroot 246eda9f factors 2^20 877 dwt-root 24803ef1 order 2^20
p 37200001 primroot 029f86ed factors 2^21 3 3 7 7 dwt-root 18b1410e order 2^21
p 37300001 primroot 35f25901 factors 2^20 883 dwt-root 297087ca order 2^20
p 37c00001 primroot 0525cf27 factors 2^22 223 dwt-root 227188ac order 2^22
p 37f00001 primroot 25897b94 factors 2^20 5 179 dwt-root 0fc2a1f0 order 2^20
p 38100001 primroot 1e1d33ed factors 2^20 3 13 23 dwt-root 1eee6a89 order 2^20
p 38400001 primroot 2cf8c37e factors 2^22 3 3 5 5 dwt-root 2ee15c0e order 2^22
p 38a00001 primroot 11060e57 factors 2^21 3 151 dwt-root 1493b30e order 2^21
p 39100001 primroot 348657d9 factors 2^20 11 83 dwt-root 18687f95 order 2^20
p 39600001 primroot 297695e1 factors 2^21 3 3 3 17 dwt-root 29bca8fc order 2^21
p 39f00001 primroot 10cd9c15 factors 2^20 3 3 103 dwt-root 0674a1fa order 2^20
p 3a200001 primroot 351d513e factors 2^21 3 5 31 dwt-root 0fea3e86 order 2^21
p 3a300001 primroot 27856dbe factors 2^20 7 7 19 dwt-root 208205f8 order 2^20
p 3ac00001 primroot 04c47e07 factors 2^22 5 47 dwt-root 372b0a54 order 2^22
p 3b800001 primroot 00e9a248 factors 2^23 7 17 dwt-root 25bcd018 order 2^23
p 3be00001 primroot 29e0eddc factors 2^21 479 dwt-root 29adf206 order 2^21
p 3c100001 primroot 1a135ebb factors 2^20 31 31 dwt-root 06af8b59 order 2^20
p 3c600001 primroot 281f5f45 factors 2^21 3 7 23 dwt-root 24d28be1 order 2^21
p 3e500001 primroot 022f5768 factors 2^20 997 dwt-root 3a935a41 order 2^20
p 3eb00001 primroot 1e94971a factors 2^20 17 59 dwt-root 0a1893a3 order 2^20
p 3ed00001 primroot 3a0abed6 factors 2^20 3 5 67 dwt-root 0d22fb97 order 2^20
I checked that multiplying out each specified root-of-two by powers of the corresponding root-of-unity yields (order) unique residues. So what am I missing if I should expect the orders of the roots of 2 to be smaller?
jasonp is offline   Reply With Quote
Old 2018-06-11, 20:07   #26
Mysticial
 
Mysticial's Avatar
 
Sep 2016

1011111002 Posts
Default

Quote:
Originally Posted by jasonp View Post
I searched through the 30-bit primes and found quite a few that would be suitable for a NTT; all of the following have a root of two whose order is a large power of two and matches the order of the largest power-of-two root of unity modulo the prime:
Code:
p 22600001 primroot 04c8bae8 factors 2^21 5 5 11 dwt-root 008f1b9d order 2^21
p 22b00001 primroot 1889755b factors 2^20 3 5 37 dwt-root 20cf3916 order 2^20
p 23800001 primroot 158a82f1 factors 2^23 71 dwt-root 1efa1d96 order 2^23
p 23a00001 primroot 180eecaf factors 2^21 3 5 19 dwt-root 1e675b3f order 2^21
p 24100001 primroot 0e9595e6 factors 2^20 577 dwt-root 07c59f6d order 2^20
p 25e00001 primroot 01139d1b factors 2^21 3 101 dwt-root 00c2ad24 order 2^21
p 26200001 primroot 16692d18 factors 2^21 5 61 dwt-root 08b905b9 order 2^21
p 26800001 primroot 0d5e196d factors 2^23 7 11 dwt-root 1a3aa741 order 2^23
p 26a00001 primroot 234fdf92 factors 2^21 3 103 dwt-root 1a935819 order 2^21
p 27100001 primroot 0ab4f058 factors 2^20 5 5 5 5 dwt-root 106260cf order 2^20
p 27c00001 primroot 08c83b6c factors 2^22 3 53 dwt-root 035b3c19 order 2^22
p 28c00001 primroot 0e1f4c18 factors 2^22 163 dwt-root 1d204c71 order 2^22
p 2a600001 primroot 1f45b95c factors 2^21 3 113 dwt-root 0f3eefee order 2^21
p 2aa00001 primroot 15362e51 factors 2^21 11 31 dwt-root 177ad8d5 order 2^21
p 2ad00001 primroot 0f069c74 factors 2^20 5 137 dwt-root 1b4d3d3e order 2^20
p 2c200001 primroot 0e28187e factors 2^21 353 dwt-root 0a5266ac order 2^21
p 2c700001 primroot 0a361d1d factors 2^20 3 3 79 dwt-root 25d706dd order 2^20
p 2d000001 primroot 2c18f042 factors 2^24 3 3 5 dwt-root 0a489736 order 2^24
p 2df00001 primroot 01938851 factors 2^20 3 5 7 7 dwt-root 0971c5c8 order 2^20
p 2ee00001 primroot 0d9cd97a factors 2^21 3 5 5 5 dwt-root 04f4a141 order 2^21
p 2fa00001 primroot 14894b0f factors 2^21 3 127 dwt-root 2d0a271a order 2^21
p 2fb00001 primroot 23e1f07c factors 2^20 7 109 dwt-root 1004dbed order 2^20
p 2fd00001 primroot 06280117 factors 2^20 3 3 5 17 dwt-root 270d91f4 order 2^20
p 30d00001 primroot 040d960b factors 2^20 11 71 dwt-root 19b64592 order 2^20
p 31200001 primroot 07f3b74a factors 2^21 3 131 dwt-root 28303766 order 2^21
p 31b00001 primroot 03969c38 factors 2^20 3 5 53 dwt-root 017f4edd order 2^20
p 32b00001 primroot 32525f31 factors 2^20 811 dwt-root 1cb65e06 order 2^20
p 33700001 primroot 05eb3b37 factors 2^20 823 dwt-root 0e1ead7b order 2^20
p 34800001 primroot 05e26177 factors 2^23 3 5 7 dwt-root 26f88c2b order 2^23
p 34b00001 primroot 253b3b21 factors 2^20 3 281 dwt-root 0c040aec order 2^20
p 35800001 primroot 340422f0 factors 2^23 107 dwt-root 32d76a52 order 2^23
p 35a00001 primroot 070ff1f7 factors 2^21 3 11 13 dwt-root 114c150a order 2^21
p 36100001 primroot 34475648 factors 2^20 5 173 dwt-root 1985e108 order 2^20
p 36700001 primroot 328220c0 factors 2^20 13 67 dwt-root 2e3c5dfd order 2^20
p 36c00001 primroot 052f72f3 factors 2^22 3 73 dwt-root 14cbe41b order 2^22
p 36d00001 primroot 246eda9f factors 2^20 877 dwt-root 24803ef1 order 2^20
p 37200001 primroot 029f86ed factors 2^21 3 3 7 7 dwt-root 18b1410e order 2^21
p 37300001 primroot 35f25901 factors 2^20 883 dwt-root 297087ca order 2^20
p 37c00001 primroot 0525cf27 factors 2^22 223 dwt-root 227188ac order 2^22
p 37f00001 primroot 25897b94 factors 2^20 5 179 dwt-root 0fc2a1f0 order 2^20
p 38100001 primroot 1e1d33ed factors 2^20 3 13 23 dwt-root 1eee6a89 order 2^20
p 38400001 primroot 2cf8c37e factors 2^22 3 3 5 5 dwt-root 2ee15c0e order 2^22
p 38a00001 primroot 11060e57 factors 2^21 3 151 dwt-root 1493b30e order 2^21
p 39100001 primroot 348657d9 factors 2^20 11 83 dwt-root 18687f95 order 2^20
p 39600001 primroot 297695e1 factors 2^21 3 3 3 17 dwt-root 29bca8fc order 2^21
p 39f00001 primroot 10cd9c15 factors 2^20 3 3 103 dwt-root 0674a1fa order 2^20
p 3a200001 primroot 351d513e factors 2^21 3 5 31 dwt-root 0fea3e86 order 2^21
p 3a300001 primroot 27856dbe factors 2^20 7 7 19 dwt-root 208205f8 order 2^20
p 3ac00001 primroot 04c47e07 factors 2^22 5 47 dwt-root 372b0a54 order 2^22
p 3b800001 primroot 00e9a248 factors 2^23 7 17 dwt-root 25bcd018 order 2^23
p 3be00001 primroot 29e0eddc factors 2^21 479 dwt-root 29adf206 order 2^21
p 3c100001 primroot 1a135ebb factors 2^20 31 31 dwt-root 06af8b59 order 2^20
p 3c600001 primroot 281f5f45 factors 2^21 3 7 23 dwt-root 24d28be1 order 2^21
p 3e500001 primroot 022f5768 factors 2^20 997 dwt-root 3a935a41 order 2^20
p 3eb00001 primroot 1e94971a factors 2^20 17 59 dwt-root 0a1893a3 order 2^20
p 3ed00001 primroot 3a0abed6 factors 2^20 3 5 67 dwt-root 0d22fb97 order 2^20
I checked that multiplying out each specified root-of-two by powers of the corresponding root-of-unity yields (order) unique residues. So what am I missing if I should expect the orders of the roots of 2 to be smaller?
Are the roots-of-two correct? The first one I looked at is the 3rd one:

p = 0x23800001 = 595591169
w = 0x1efa1d96 = 519708054

519708054^(2^23) mod 595591169 = 451061951

Also, Wolfram Alpha returns no solution for: PowerMod[2, 1/4, 595591169]

So it doesn't even have a 4th root-of-two - let alone a 2^23rd.

Last fiddled with by Mysticial on 2018-06-11 at 20:10
Mysticial is offline   Reply With Quote
Old 2018-06-11, 20:57   #27
jasonp
Tribal Bullet
 
jasonp's Avatar
 
Oct 2004

1101111011012 Posts
Default

I see the problem, I wasn't checking whether the square root was solvable before computing it. Adding a Legendre check and printing in decimal now yields
Code:
p 536903681 primroot 179828132 factors 2^15 5 29 113 dwt-root 283856863 order 2^13
p 568406017 primroot 116384346 factors 2^12 3 3 17 907 dwt-root 176417532 order 2^11
p 590737409 primroot 527340004 factors 2^12 144223 dwt-root 197873606 order 2^11
p 613742593 primroot 81759997 factors 2^11 3 191 523 dwt-root 77279604 order 2^11
p 628021249 primroot 609313535 factors 2^11 3 102217 dwt-root 4276385 order 2^11
p 680058881 primroot 339951669 factors 2^13 5 16603 dwt-root 420691659 order 2^11
p 694614017 primroot 306447105 factors 2^11 17 71 281 dwt-root 239731871 order 2^11
p 705359873 primroot 366883740 factors 2^12 7 73 337 dwt-root 643622083 order 2^11
p 716531713 primroot 88617846 factors 2^11 3 13 8971 dwt-root 519462414 order 2^11
p 751599617 primroot 142635099 factors 2^15 22937 dwt-root 100418175 order 2^11
p 760197121 primroot 613923624 factors 2^12 3 5 12373 dwt-root 629602267 order 2^11
p 771739649 primroot 320084088 factors 2^12 29 73 89 dwt-root 59058360 order 2^12
p 854026241 primroot 174518929 factors 2^11 5 83401 dwt-root 349192115 order 2^11
p 913324033 primroot 577747733 factors 2^11 3 3 3 83 199 dwt-root 4870533 order 2^11
p 921782273 primroot 356301033 factors 2^11 31 14519 dwt-root 272023053 order 2^11
p 940613633 primroot 65730855 factors 2^13 7 47 349 dwt-root 592028551 order 2^13
p 1009606657 primroot 570890730 factors 2^13 3 41081 dwt-root 156965663 order 2^11
p 1011167233 primroot 494276226 factors 2^12 3 19 61 71 dwt-root 533960189 order 2^11
p 1017788417 primroot 420693678 factors 2^11 61 8147 dwt-root 201343990 order 2^11
p 1035491329 primroot 980936777 factors 2^11 3 3 56179 dwt-root 176753051 order 2^11
p 1052508161 primroot 927474728 factors 2^18 5 11 73 dwt-root 763761318 order 2^11
So yeah, not that great.

Last fiddled with by jasonp on 2018-06-11 at 21:03
jasonp is offline   Reply With Quote
Old 2018-06-29, 14:05   #28
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Liverpool (GMT/BST)

3·23·89 Posts
Default

It looks like VOLTA has separated the INT32 and FP32 cores and can use both at once. Would a useful joint Integer/float fft be possible with these low precision types? Some FP64 could be used for added precision in places although consumer cards will be heavily limited there. https://devblogs.nvidia.com/inside-volta/
henryzz is offline   Reply With Quote
Old 2018-06-29, 14:22   #29
preda
 
preda's Avatar
 
"Mihai Preda"
Apr 2015

145210 Posts
Default

Quote:
Originally Posted by henryzz View Post
It looks like VOLTA has separated the INT32 and FP32 cores and can use both at once. Would a useful joint Integer/float fft be possible with these low precision types? Some FP64 could be used for added precision in places although consumer cards will be heavily limited there. https://devblogs.nvidia.com/inside-volta/

SP & DP FFT has the benefit of being handled by cuFFT; (but not any NTT).


SP FFT at 4M+ FFT size, IMO, does not work at all. (Too much loss of precision in the SP FFT twiddles).


So that leaves DP + hand-rolled-NTT, which might be worth but a lot of work.


BTW, which VOLTA GPU would you suggest buying?
preda is offline   Reply With Quote
Old 2018-06-29, 14:45   #30
henryzz
Just call me Henry
 
henryzz's Avatar
 
"David"
Sep 2007
Liverpool (GMT/BST)

3·23·89 Posts
Default

Quote:
Originally Posted by preda View Post
SP & DP FFT has the benefit of being handled by cuFFT; (but not any NTT).


SP FFT at 4M+ FFT size, IMO, does not work at all. (Too much loss of precision in the SP FFT twiddles).


So that leaves DP + hand-rolled-NTT, which might be worth but a lot of work.


BTW, which VOLTA GPU would you suggest buying?
The cheap ones haven't surfaced yet. I would wait.
Is it not possibly to interleave DP and SP to reduce the errors without over-saturating the DP?
henryzz is offline   Reply With Quote
Old 2018-06-29, 19:18   #31
kriesel
 
kriesel's Avatar
 
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest

172208 Posts
Default

Quote:
Originally Posted by henryzz View Post
Is it not possibly to interleave DP and SP to reduce the errors without over-saturating the DP?
Probably not worth it. See http://www.mersenneforum.org/showpos...&postcount=224 where Preda describes what he found with DP, SP, integer M31 based, and integer M61 based.
kriesel is online now   Reply With Quote
Old 2018-06-29, 22:16   #32
preda
 
preda's Avatar
 
"Mihai Preda"
Apr 2015

22×3×112 Posts
Default

Quote:
Originally Posted by kriesel View Post
Probably not worth it. See http://www.mersenneforum.org/showpos...&postcount=224 where Preda describes what he found with DP, SP, integer M31 based, and integer M61 based.
My best bet is in DP + M31; I haven't tried this in practice yet. (I only did a standalone M31). M31 also has better memory density than DP.

The "bits per word" would be:
- M31 alone: about 5 bits/w.
- DP + M31: about 18 + 15.5 bits/w.

Last fiddled with by preda on 2018-06-29 at 22:16
preda is offline   Reply With Quote
Old 2018-06-29, 22:22   #33
preda
 
preda's Avatar
 
"Mihai Preda"
Apr 2015

22·3·112 Posts
Default

Quote:
Originally Posted by henryzz View Post
Is it not possibly to interleave DP and SP to reduce the errors without over-saturating the DP?
Not easy to mix SP&DP in the same operation, because the conversion operations SP<->DP are slow.

Maybe one could try a "double SP" FFT (using two SP instead of one DP), but most likely that'd be slower than DP (and a lot more complicated).

Last fiddled with by preda on 2018-06-29 at 22:22
preda is offline   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
128 bit integer division in CUDA? cseizert GPU Computing 8 2016-11-27 15:41
Non-power-of-two FFTs jasonp Computer Science & Computational Number Theory 15 2014-06-10 14:49
P95 PrimeNet causes BSOD; small FFTs, large FFTs, and blend test don't KarateF22 PrimeNet 16 2013-10-28 00:34
In Place Large FFTs Failure nwb Information & Answers 2 2011-07-08 16:04
gmp-ecm and FFTs dave_dm Factoring 9 2004-09-04 11:47

All times are UTC. The time now is 14:50.


Fri Jul 7 14:50:38 UTC 2023 up 323 days, 12:19, 0 users, load averages: 0.74, 1.10, 1.11

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔