mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Miscellaneous Math

Reply
 
Thread Tools
Old 2018-05-27, 22:02   #1
hydeer
 
Jan 2018

3 Posts
Default Using Logarithms of Mersenne Primes

Wolfram mathematica is used to make a list of Log, to the base 2 ,of Mersenne primes .

t[n_] := N[ Log2[2^Prime[n] - 1]]
Table[t[i], {i, 1, 50}]
{1.58496, 2.80735, 4.9542, 6.98868, 10.9993, 12.9998, 17., 19., 23., \
29., 31., 37., 41., 43., 47., 53., 59., 61., 67., 71., 73., 79., 83., \
89., 97., 101., 103., 107., 109., 113., 127., 131., 137., 139., 149., \
151., 157., 163., 167., 173., 179., 181., 191., 193., 197., 199., \
211., 223., 227., 229.}
hydeer is offline   Reply With Quote
Old 2018-05-27, 22:17   #2
science_man_88
 
science_man_88's Avatar
 
"Forget I exist"
Jul 2009
Dartmouth NS

8,461 Posts
Default

Quote:
Originally Posted by hydeer View Post
Wolfram mathematica is used to make a list of Log, to the base 2 ,of Mersenne primes .

t[n_] := N[ Log2[2^Prime[n] - 1]]
Table[t[i], {i, 1, 50}]
{1.58496, 2.80735, 4.9542, 6.98868, 10.9993, 12.9998, 17., 19., 23., \
29., 31., 37., 41., 43., 47., 53., 59., 61., 67., 71., 73., 79., 83., \
89., 97., 101., 103., 107., 109., 113., 127., 131., 137., 139., 149., \
151., 157., 163., 167., 173., 179., 181., 191., 193., 197., 199., \
211., 223., 227., 229.}
And this proves ?
science_man_88 is offline   Reply With Quote
Old 2018-05-27, 22:37   #3
a1call
 
a1call's Avatar
 
"Rashid Naimi"
Oct 2015
Remote to Here/There

2×11×109 Posts
Default

Quote:
Originally Posted by hydeer View Post
Wolfram mathematica is used to make a list of Log, to the base 2 ,of Mersenne primes .

t[n_] := N[ Log2[2^Prime[n] - 1]]
Table[t[i], {i, 1, 50}]
I think you mean Merseene-Numbers with Prime-Exponents, not Mersenne-Primes.

Regardless, I think that's a very interesting if not useful observation/discovery.

ETA then again you are getting the same prime as the exponent after rounding the log base 2 of the Mersenne number. So not interesting anymore.

Last fiddled with by a1call on 2018-05-27 at 22:45
a1call is online now   Reply With Quote
Old 2018-05-27, 22:46   #4
a1call
 
a1call's Avatar
 
"Rashid Naimi"
Oct 2015
Remote to Here/There

239810 Posts
Default

Here is the PARI GP equivalent with rounding added:

Code:
forprime(p=2,19^2,{
  M= 2^p-1;
    theRoundedLog =round(log(M)/log(2));
    print("*** M",p," >>> ", theRoundedLog ," >> ",isprime(theRoundedLog ));
    if(!isprime(theRoundedLog ),next(19););
  
})
Code:
*** M2 >>> 2 >> 1
*** M3 >>> 3 >> 1
*** M5 >>> 5 >> 1
*** M7 >>> 7 >> 1
*** M11 >>> 11 >> 1
*** M13 >>> 13 >> 1
*** M17 >>> 17 >> 1
*** M19 >>> 19 >> 1
*** M23 >>> 23 >> 1
*** M29 >>> 29 >> 1
*** M31 >>> 31 >> 1
*** M37 >>> 37 >> 1
*** M41 >>> 41 >> 1
*** M43 >>> 43 >> 1
*** M47 >>> 47 >> 1
*** M53 >>> 53 >> 1
*** M59 >>> 59 >> 1
*** M61 >>> 61 >> 1
*** M67 >>> 67 >> 1
*** M71 >>> 71 >> 1
*** M73 >>> 73 >> 1
*** M79 >>> 79 >> 1
*** M83 >>> 83 >> 1
*** M89 >>> 89 >> 1
*** M97 >>> 97 >> 1
*** M101 >>> 101 >> 1
*** M103 >>> 103 >> 1
*** M107 >>> 107 >> 1
*** M109 >>> 109 >> 1
*** M113 >>> 113 >> 1
*** M127 >>> 127 >> 1
*** M131 >>> 131 >> 1
*** M137 >>> 137 >> 1
*** M139 >>> 139 >> 1
*** M149 >>> 149 >> 1
*** M151 >>> 151 >> 1
*** M157 >>> 157 >> 1
*** M163 >>> 163 >> 1
*** M167 >>> 167 >> 1
*** M173 >>> 173 >> 1
*** M179 >>> 179 >> 1
*** M181 >>> 181 >> 1
*** M191 >>> 191 >> 1
*** M193 >>> 193 >> 1
*** M197 >>> 197 >> 1
*** M199 >>> 199 >> 1
*** M211 >>> 211 >> 1
*** M223 >>> 223 >> 1
*** M227 >>> 227 >> 1
*** M229 >>> 229 >> 1
*** M233 >>> 233 >> 1
*** M239 >>> 239 >> 1
*** M241 >>> 241 >> 1
*** M251 >>> 251 >> 1
*** M257 >>> 257 >> 1
*** M263 >>> 263 >> 1
*** M269 >>> 269 >> 1
*** M271 >>> 271 >> 1
*** M277 >>> 277 >> 1
*** M281 >>> 281 >> 1
*** M283 >>> 283 >> 1
*** M293 >>> 293 >> 1
*** M307 >>> 307 >> 1
*** M311 >>> 311 >> 1
*** M313 >>> 313 >> 1
*** M317 >>> 317 >> 1
*** M331 >>> 331 >> 1
*** M337 >>> 337 >> 1
*** M347 >>> 347 >> 1
*** M349 >>> 349 >> 1
*** M353 >>> 353 >> 1
*** M359 >>> 359 >> 1
ETA you would get exact match with no rounding required if you remove the "-1" from your code.

Last fiddled with by a1call on 2018-05-27 at 22:49
a1call is online now   Reply With Quote
Old 2018-05-28, 03:42   #5
Dr Sardonicus
 
Dr Sardonicus's Avatar
 
Feb 2017
Nowhere

13×17×29 Posts
Default

Quote:
Originally Posted by hydeer View Post
Wolfram mathematica is used to make a list of Log, to the base 2 ,of Mersenne primes .
[snip]
Whether 2^p - 1 is prime or not, if p is at all large, the base-two log of 2^p - 1 should be fairly close to

p - 1/(2^(p)*ln(2).)

Of course,

p - 1/(2^(p)*ln(2)) - 1/(2^(2*p+1)*ln(2))

would be closer...
Dr Sardonicus is offline   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
Distribution of Mersenne primes before and after couples of primes found emily Math 35 2022-12-21 16:32
Mersenne Primes p which are in a set of twin primes is finite? carpetpool Miscellaneous Math 4 2022-07-14 02:29
Can discrete logarithms / factoring be done in P (i.e., deterministic polynomial time)? Raman Factoring 1 2016-05-23 13:44
Software for discrete logarithms Lakshmi Factoring 10 2013-12-16 20:27
Mersenne Wiki: Improving the mersenne primes web site by FOSS methods optim PrimeNet 13 2004-07-09 13:51

All times are UTC. The time now is 13:07.


Fri Jul 7 13:07:11 UTC 2023 up 323 days, 10:35, 0 users, load averages: 0.70, 1.00, 1.11

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔