![]() |
|
|
#1 |
|
Jan 2018
3 Posts |
Wolfram mathematica is used to make a list of Log, to the base 2 ,of Mersenne primes .
t[n_] := N[ Log2[2^Prime[n] - 1]] Table[t[i], {i, 1, 50}] {1.58496, 2.80735, 4.9542, 6.98868, 10.9993, 12.9998, 17., 19., 23., \ 29., 31., 37., 41., 43., 47., 53., 59., 61., 67., 71., 73., 79., 83., \ 89., 97., 101., 103., 107., 109., 113., 127., 131., 137., 139., 149., \ 151., 157., 163., 167., 173., 179., 181., 191., 193., 197., 199., \ 211., 223., 227., 229.} |
|
|
|
|
|
#2 | |
|
"Forget I exist"
Jul 2009
Dartmouth NS
8,461 Posts |
Quote:
|
|
|
|
|
|
|
#3 | |
|
"Rashid Naimi"
Oct 2015
Remote to Here/There
2×11×109 Posts |
Quote:
Regardless, I think that's a very interesting if not useful observation/discovery. ![]() ETA then again you are getting the same prime as the exponent after rounding the log base 2 of the Mersenne number. So not interesting anymore. Last fiddled with by a1call on 2018-05-27 at 22:45 |
|
|
|
|
|
|
#4 |
|
"Rashid Naimi"
Oct 2015
Remote to Here/There
239810 Posts |
Here is the PARI GP equivalent with rounding added:
Code:
forprime(p=2,19^2,{
M= 2^p-1;
theRoundedLog =round(log(M)/log(2));
print("*** M",p," >>> ", theRoundedLog ," >> ",isprime(theRoundedLog ));
if(!isprime(theRoundedLog ),next(19););
})
Code:
*** M2 >>> 2 >> 1 *** M3 >>> 3 >> 1 *** M5 >>> 5 >> 1 *** M7 >>> 7 >> 1 *** M11 >>> 11 >> 1 *** M13 >>> 13 >> 1 *** M17 >>> 17 >> 1 *** M19 >>> 19 >> 1 *** M23 >>> 23 >> 1 *** M29 >>> 29 >> 1 *** M31 >>> 31 >> 1 *** M37 >>> 37 >> 1 *** M41 >>> 41 >> 1 *** M43 >>> 43 >> 1 *** M47 >>> 47 >> 1 *** M53 >>> 53 >> 1 *** M59 >>> 59 >> 1 *** M61 >>> 61 >> 1 *** M67 >>> 67 >> 1 *** M71 >>> 71 >> 1 *** M73 >>> 73 >> 1 *** M79 >>> 79 >> 1 *** M83 >>> 83 >> 1 *** M89 >>> 89 >> 1 *** M97 >>> 97 >> 1 *** M101 >>> 101 >> 1 *** M103 >>> 103 >> 1 *** M107 >>> 107 >> 1 *** M109 >>> 109 >> 1 *** M113 >>> 113 >> 1 *** M127 >>> 127 >> 1 *** M131 >>> 131 >> 1 *** M137 >>> 137 >> 1 *** M139 >>> 139 >> 1 *** M149 >>> 149 >> 1 *** M151 >>> 151 >> 1 *** M157 >>> 157 >> 1 *** M163 >>> 163 >> 1 *** M167 >>> 167 >> 1 *** M173 >>> 173 >> 1 *** M179 >>> 179 >> 1 *** M181 >>> 181 >> 1 *** M191 >>> 191 >> 1 *** M193 >>> 193 >> 1 *** M197 >>> 197 >> 1 *** M199 >>> 199 >> 1 *** M211 >>> 211 >> 1 *** M223 >>> 223 >> 1 *** M227 >>> 227 >> 1 *** M229 >>> 229 >> 1 *** M233 >>> 233 >> 1 *** M239 >>> 239 >> 1 *** M241 >>> 241 >> 1 *** M251 >>> 251 >> 1 *** M257 >>> 257 >> 1 *** M263 >>> 263 >> 1 *** M269 >>> 269 >> 1 *** M271 >>> 271 >> 1 *** M277 >>> 277 >> 1 *** M281 >>> 281 >> 1 *** M283 >>> 283 >> 1 *** M293 >>> 293 >> 1 *** M307 >>> 307 >> 1 *** M311 >>> 311 >> 1 *** M313 >>> 313 >> 1 *** M317 >>> 317 >> 1 *** M331 >>> 331 >> 1 *** M337 >>> 337 >> 1 *** M347 >>> 347 >> 1 *** M349 >>> 349 >> 1 *** M353 >>> 353 >> 1 *** M359 >>> 359 >> 1 Last fiddled with by a1call on 2018-05-27 at 22:49 |
|
|
|
|
|
#5 | |
|
Feb 2017
Nowhere
13×17×29 Posts |
Quote:
p - 1/(2^(p)*ln(2).) Of course, p - 1/(2^(p)*ln(2)) - 1/(2^(2*p+1)*ln(2)) would be closer... |
|
|
|
|
![]() |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Distribution of Mersenne primes before and after couples of primes found | emily | Math | 35 | 2022-12-21 16:32 |
| Mersenne Primes p which are in a set of twin primes is finite? | carpetpool | Miscellaneous Math | 4 | 2022-07-14 02:29 |
| Can discrete logarithms / factoring be done in P (i.e., deterministic polynomial time)? | Raman | Factoring | 1 | 2016-05-23 13:44 |
| Software for discrete logarithms | Lakshmi | Factoring | 10 | 2013-12-16 20:27 |
| Mersenne Wiki: Improving the mersenne primes web site by FOSS methods | optim | PrimeNet | 13 | 2004-07-09 13:51 |