![]() |
|
|
#89 | |
|
Sep 2010
Scandinavia
3·5·41 Posts |
Quote:
Just the other day tiny factors were found <1M. I believe that George said something along the lines "there may be missed factors in the <1M range", but that was long ago. New question: Assuming one wanted to spend time looking for missed factors, where would you (or someone else) suggest looking? For instance; the state of GIMPS at the time of relevant software changes could (I speculate) set limits for ranges of interest. According to PrimeNet, these are the 58bit and smaller factors found this year. Sorted by factor size. The largest exponents are near 9.03M. Code:
99023 980560602097 1016959 18653763679711 1000249 18718209673951 1012631 19848410108993 1010083 20476992464473 1019177 21488556163649 1006037 23404082594681 1019747 23799508124081 1018313 24324727758641 1008979 31637343728201 1012087 32573220546271 1013879 34625346725441 1015499 35394567725641 1015507 37283510851289 1001023 43400827672903 864007 46477709992471 1009997 48129370881049 1002289 48903508485137 1012631 50384038680457 1015549 51839698005217 1017703 61295136287513 1018207 61634570426393 1009991 65613588599249 1012751 66624391675561 1019617 73345567713311 1001549 78737816245961 1000907 80089865682031 1005913 82565258566961 1011817 85194319553513 1002191 89413003603849 1002851 90306098748169 1011733 103881086013473 1001023 105325934316809 1002809 108624581750791 1017781 119335489914337 1004657 120969487520809 1005593 121804213923937 400157 128240538662921 1011797 151518203436449 1007651 185960105727329 1002191 206961669674729 1007723 207476662211801 106243 220091409617207 1016159 227720112092783 1014199 228600194965057 1010957 242816965849993 1003913 252300058074929 1015127 259085723606873 1015471 263462537414369 1002851 265430938262447 100523 265722819270463 1002359 298610005183879 1017437 317388210528121 2420779 319464569056489 1001381 348075947962759 1005493 351900700637111 1004743 355675043217721 1006513 360597218428999 1006507 368083732552673 1011671 372929571475063 4133449 402229658827897 1010201 406245525415663 104681 421630521561673 4342111 431267678479543 4247863 446251303961191 1018109 471922881727343 1008857 504298736777233 1014193 518205426514553 1016303 539032923610121 4274969 554148465384329 1010579 561804491415863 1009457 569495154117559 1008613 570848425426423 1017131 583226334994423 108869 640334321542471 1004441 649241734499201 1018559 720553676854457 1014833 724291410620993 108401 754055767693049 1010809 808866600136687 1009837 907916064221279 1018313 984707807470577 83009 990980413706951 125399 1011662939203313 1003943 1134859295559161 1007179 1166357726794913 1018291 1200214155372671 1004371 1201615242506641 1007959 1206562695464911 1012771 1225524778255703 1002359 1346039738821537 1002173 1357535167633721 99079 1412184542980087 1002511 1475685631549127 1002143 1533246771531151 1005493 1538728354360943 1008913 1601754304362871 1011431 1783738457388967 1005527 1797217598520353 1004233 1806811609034063 1012993 1895467579412423 1012087 1936194720326063 901097 1952850613315457 98009 1988617268030023 1006193 2020846479258359 1017011 2033149477786793 901547 2124272174277161 400217 2394731204476207 1009601 2400592635533327 1014193 2447466101263849 1009637 2490076365496351 1004567 2507583067761001 1013923 2725924871816233 1002149 2803832954121263 1002569 2872444793803049 62099 3019058178003401 82307 3030500283220913 1004779 3033896470116761 1018313 3227638113018551 1010353 3236064988674431 1008809 3267646386769361 101273 3271387127383937 86857 3321995396388511 1017827 3435506187107663 1009991 3528760434779887 104513 3611892180968927 1014131 3652586416418783 100271 3661741939738607 83137 3671207650081553 1001639 3860527691238961 1004441 3899769535437313 9028337 3912521837704031 1016573 3940972432466063 1014199 4020853779326623 104827 4312079700970529 1000253 4365256714603753 1016947 4508448594046097 90821 4530157350487799 104123 4848782238266807 1001659 5095495810541057 103471 5188727978053273 85487 5316775202138161 1011779 5366906234880833 1016051 5367413221442759 1008809 5434110214311407 93719 5449249011160751 1001947 6023437950357383 1015697 6106280787650177 1001023 6239409282646471 1000507 6545453841447847 1009289 6722020453106921 1012997 6828461100959191 1019747 6860676621234559 1013671 7463026192839703 81373 7535738901877169 106087 7545325068873769 107867 8659739619596137 1009037 8710630331154617 82217 8785578980234401 1004873 8920225963481009 1019443 9048286923381911 400009 9326149030431929 1000537 9362759471355617 9028337 9720574988871041 1007459 9974630715927529 126047 10068069852964433 108343 10093628875392599 1007129 10374999104164153 1016959 10468076425908791 1016573 10489367636012537 1011071 10822284427910209 100447 10833463432273607 1008223 11020294552348481 1006339 11206106968395847 1008437 11260060308181127 88523 11278949304402127 1002523 11974269164369623 62131 12184261955089673 1013671 12587896925293649 1017857 12746205441772921 1000907 13671464359549247 60337 14157609727264231 1019209 14199609416529217 88811 15410174172800081 1012703 16826761459540961 127289 16990947052876033 1016053 19055636858196751 1018999 21187947967344409 1009559 21268826671484057 1003193 22446770078845153 1009937 23845373163654071 1182953 24042946210458353 1011677 24410729824112999 1008407 24643610973806777 1001173 25906499624318393 1002517 26137376131629977 1014743 26859693834111353 1018859 27509358587002399 1007813 27948761631467279 1001809 28253697237572929 125119 28706030530418713 1011343 29010047325596663 1620989 29166507389557009 104779 29952897673599311 1005541 30164687516194657 81131 30970934344553807 1005269 31730846049890033 100823 32718508623684503 107903 33240811694356087 66601 33598299665978119 1019267 36035719707737639 125899 37896766522865713 1003621 40858310866986911 105211 41527813489337039 885977 42768654755388593 73693 42798053430500713 1452457 44223530791070777 1011343 45702720956876761 1003363 46374008358700271 1000847 49805097491188079 1618241 51329980060216993 65357 58130304979246361 53609 60792876838136119 104231 61584794440146511 108421 63388824385479511 66221 63396230446135231 102077 63736696785276377 72341 65355437734517401 103511 65928873019240271 1006063 66167532034560599 1009037 66852840610376657 1012829 68232868550629439 1001587 68509862263995583 127219 69961396774604807 1011733 71859146656358623 109589 73530089455028033 77137 74027323761489881 1510799 78128410571491879 1017703 78831282269233657 1001327 79724596802652383 1015871 80239306685666977 1002247 81754558937865607 1000099 82815026005984871 1008863 82866332946794017 1016359 83239897060454089 98887 83256236543665489 73939 83757780760254191 1019357 86371091158126561 63521 86927908707753073 87641 89472672952096751 1010957 95992770210964313 1502689 101582513471959879 1007933 103015778813126183 1006063 104477544626947361 1501663 105064962893473657 82307 109585211839872919 1013791 110528245389881287 1012457 113619522018953569 127301 116783194462665937 72211 122869954525849481 69991 124990441490405599 97771 125898247734526409 1012399 126045865312962607 1004233 128658770240793503 1006193 138559778438573321 1001387 146249244431956031 1013581 148741927534567273 39239 151688561135612231 9000683 152951220467377351 60383 154821431322412159 103177 167230673565034081 41887 168666943367160473 101467 171665469954516919 84067 172890589120324177 66629 177840727690088273 104681 183610827669992551 106367 192625801807206121 101467 195715582128306503 109639 196708855126048247 83843 198423011702650313 108343 216924007232406889 71471 230415693584014439 38833 273437273838431047 107137 278540511429188759 |
|
|
|
|
|
|
#90 |
|
Aug 2002
Termonfeckin, IE
53208 Posts |
A Mersenne number has a factor of size x bits with a probability 1/x. Use this to estimate the average number of factors a range should have. Then identify ranges that have too few factors. You could use 2 SD as a starting point. The resulting ranges are where I would start looking. There is an old thread here that will help you: http://www.mersenneforum.org/showthread.php?t=1425
|
|
|
|
|
|
#91 |
|
Aug 2002
Buenos Aires, Argentina
101111100112 Posts |
A lot of these factors (if not all) are not the first prime factors found for that exponent. If a prime factor is found, GIMPS does not try to continue factoring that Mersenne number.
|
|
|
|
|
|
#92 |
|
"Mark"
Feb 2003
Sydney
3·191 Posts |
Indeed, prior to version 5 of the server, about three years ago, GIMPS only kept one factor for each exponent in its database. (Of course other folk tried to keep track of all factors.)
|
|
|
|
|
|
#93 | |||
|
Sep 2010
Scandinavia
3×5×41 Posts |
Quote:
I integrate over a given exponent range and bit depth, and then compare the results to the distribution of known factors, right? Some of the ranges mentioned in the thread has actually caught my attention already, by other means. I'm under the impression that truly missed factors 58bit or smaller are rare at this point. (59-60; I have little basis to speculate) I will probably give this some more attention. Thanks for the pointers. Quote:
Would this be an interesting example?; 1012631,243031441, 1012631,647776000177,2008-07-16 09:30 1012631,19848410108993,2010-11-02 23:32 1012631,50384038680457,2010-11-02 23:32 Quote:
Now, how does FactorOverride work? Could someone please tell me where to look for an accurate description of how it currently behaves? Or just give a brief description? |
|||
|
|
|
|
|
#94 |
|
"Richard B. Woods"
Aug 2002
Wisconsin USA
11110000011002 Posts |
All it does is override the default bit limit for TF. It changes nothing else (such as the algorithm).
Prime95 source module commonc.h specifies the default TF bit limits. In v25, they're: Code:
/* These breakeven points we're calculated on a 2.0 GHz P4 Northwood: */ #define FAC80 516000000L #define FAC79 420400000L #define FAC78 337400000L #define FAC77 264600000L #define FAC76 227300000L #define FAC75 186400000L #define FAC74 147500000L #define FAC73 115300000L #define FAC72 96830000L #define FAC71 75670000L #define FAC70 58520000L #define FAC69 47450000L #define FAC68 37800000L #define FAC67 29690000L #define FAC66 23390000L /* These breakevens we're calculated a long time ago on unknown hardware: */ #define FAC65 13380000L #define FAC64 8250000L #define FAC63 6515000L #define FAC62 5160000L #define FAC61 3960000L #define FAC60 2950000L #define FAC59 2360000L #define FAC58 1930000L #define FAC57 1480000L #define FAC56 1000000L For example, exponents between 47,450,000 and 58,520,000 have a TF bit limit of 69 by default. Unless FactorOverride is used, Prime95 will TF up through 2^69 for exponents in that range. Exponents greater than 516,000,000 all have a default TF limit of 80 at present, but future versions of Prime95 might specify ranges for limits of 81, 82 ... Now, if you look at the bit levels to which exponents have actually been TFed, you'll find that there's no break at 6515000. Exponents between 6000000 and 6515000 have all been TFed to 63 (or more), as well as exponents 6515000-6999999. That's because the TF default limits used to be different in earlier versions of Prime95. At the time when exponents between 6000000 and 6515000 were being TFed, the then-current version of Prime95 specified a lower exponent range for TF-to-63 than it does now. I.e., FAC63 (and most other FACnn) then had a lower value than it does now. Note: FactorOverride can be used to set either a higher or a lower TF limit than the default value. Last fiddled with by cheesehead on 2010-11-15 at 21:39 |
|
|
|
|
|
#95 | ||
|
"Mark"
Feb 2003
Sydney
3·191 Posts |
As you've probably guessed, it's an approximation.
Quote:
![]() Quote:
Currently, trial-factoring worktodo lines specify the starting & ending level. Previously, up to client version 24.x, they looked like "Factor=21990487,65", with the starting level only and the client determined the ending level. FactorOverride could be used to change the ending level. It did not work with PrimeNet communication turned on. You would have to find an undoc.txt from v24.x or earlier for a definitive write-up. |
||
|
|
|
|
|
#96 |
|
"Richard B. Woods"
Aug 2002
Wisconsin USA
22·3·641 Posts |
That's what I get for staying a version behind. When will I learn?
Please consider all verb tenses in post #94 to be adjusted accordingly. Last fiddled with by cheesehead on 2010-11-16 at 04:46 |
|
|
|
|
|
#97 |
|
Just call me Henry
"David"
Sep 2007
Liverpool (GMT/BST)
3×23×89 Posts |
|
|
|
|
|
|
#98 |
|
"Richard B. Woods"
Aug 2002
Wisconsin USA
22×3×641 Posts |
|
|
|
|
|
|
#99 |
|
Sep 2010
Scandinavia
3×5×41 Posts |
I've started using a very handy tool for simplifying batch factorization.
Converting PrimeNet queries that can then be copy-pasted into worktodo.txt. http://mersenne-aries.sili.net/pfactor.php The older probability calculator has some new features too: http://mersenne-aries.sili.net/prob.php Thank you James Heinrich! |
|
|
|