![]() |
|
|
#23 | |
|
Sep 2005
2·32 Posts |
Quote:
Did u think to find twin primes as big as we want by finding a general formula ???? I wish all the best for u and all mathematicians . Sghodeif ,
Last fiddled with by sghodeif on 2007-10-22 at 02:12 Reason: mistak |
|
|
|
|
|
|
#24 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
No general formula that I am aware of for primes of any kind. That's what prime-searchers everywhere are hoping to find!
![]() G |
|
|
|
|
|
#25 |
|
"Gary"
May 2007
Overland Park, KS
1229610 Posts |
My Riesel/Proth twin search for k<1M is now up to n=23.5K. See the aforemention web pages for all of the twins found. I'll most likely put a 2nd core on this in the near future. It's getting quite a bit slower past n=20K.
Gary |
|
|
|
|
|
#26 |
|
Jun 2003
Suva, Fiji
2×1,021 Posts |
Gosh this is a major piece of work. GL in your search!!!!
|
|
|
|
|
|
#27 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
Thanks, Robert. I'll be hitting n=25K here on core 1 in the next couple of days. Sieving is now up to n=35K and LLRing is speeding up with the addition of a 2nd core to the effort. (Core 2 has tested n=25K-25.6K so far.) We're only averaging about 3 twins for each n=1K range now for k < 1M and the last twin for k < 100K was at n=22312. I expect plenty more but they're thinning out rapidly.
I now update the web page about twice for every n=1K range that I test. You might be interested in another 'side effort' that I have going on. I have a web page now for all known primes of the form k*10^n-1 where k < 10M at gbarnes017.googlepages.com/primes-kx10n-1.htm. The page is intended for k's of all sizes and I do have several extremely high-weight k's > 10M listed but there are still many primes > 10M from the top-5000 site that aren't on there yet. I thought you might be interested in the page because Jens Andersen and Axn1 have been battling it out for the k with the most primes and we've got some very large highly prolific k's now! I know how you like super-large super-high-weight k's. The testing is being coordinated in the Riesel Prime Search project here at this thread: mersenneforum.org/showthread.php?t=9578. Come over and try to beat our top record of 56 primes on a 20-digit k! ![]() Gary Last fiddled with by gd_barnes on 2007-11-19 at 05:45 |
|
|
|
|
|
#28 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
The "all-twin" search for k < 1M is now up to n=25.6K. See the web pages in this thread.
Gary |
|
|
|
|
|
#29 |
|
"Gary"
May 2007
Overland Park, KS
300816 Posts |
The "all-twin" search for k < 1M is now complete to n=30K. They are all shown at:
http://gbarnes017.googlepages.com/twins100K.htm http://gbarnes017.googlepages.com/twins1M.htm Here are some statistics for n=20K-30K: 1 twin for k < 10K: 7485*2^20023+/-1 2 twins for 10K < k < 100K: 70497*2^27652+/-1 31257*2^22312+/-1 39 twins for 100K < k < 1M: (highest 10 listed; see 'twins1M' web page for rest) 815751*2^29705+/-1 953337*2^28520+/-1 771843*2^28494+/-1 445569*2^28353+/-1 198417*2^27858+/-1 293445*2^27643+/-1 939015*2^27542+/-1 228015*2^27509+/-1 294723*2^27504+/-1 766293*2^27110+/-1 (etc.) All checked for triplets...no luck. Testing is currently at n=30.4K and sieving at n=40K. The search on 2 cores continues to n=100K. A 3rd core will be added at n=40K. Gary |
|
|
|
|
|
#30 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
The "all-twin" search for k < 1M is now up to n=36.1K. See the web pages in this thread.
There were 11 twins from n=30K-36.1K. Also found was the largest known Riesel/Proth twin for k<100K. Here is the complete list for the range: k<100K: 51315*2^32430+/-1 100K<k<1M: 892881*2^36075+/-1 338205*2^35351+/-1 959715*2^34895+/-1 143835*2^33826+/-1 649545*2^33398+/-1 440685*2^31989+/-1 249435*2^30977+/-1 282891*2^30309+/-1 383775*2^30279+/-1 523851*2^30197+/-1 Current known Riesel/Proth twin prime records: k<1M 134583*2^80828+/-1 (from top-5K site) k<100K 51315*2^32430+/-1 (from this effort) k<10K 7485*2^20023+/-1 (from top-5K site) k<1K 915*2^11455+/-1 (from top-5K site) Gary |
|
|
|
|
|
#31 |
|
"Gary"
May 2007
Overland Park, KS
23×29×53 Posts |
I posted 2 days too early. In just another 100n up to n=36.2K, I found 2 more twins, one for k<100K!:
47553*2^36172+/-1 296139*2^36125+/-1 The first one is the new standard to beat for k<100K. Gary |
|
|
|
|
|
#32 | ||
|
Jun 2003
Suva, Fiji
2×1,021 Posts |
Quote:
Quote:
Anyway, analysing Gary's <100K site produces the following table: I will try to fill up to n=500 Regards Robert Code:
n 1st k 1 3 2 1 3 9 4 15 5 81 6 3 7 9 8 57 9 45 10 15 11 99 12 165 13 369 14 45 15 345 16 117 17 381 18 3 19 69 20 447 21 81 22 33 23 1179 24 243 25 765 26 375 27 81 28 387 29 45 30 345 31 681 32 585 33 375 34 267 35 741 36 213 37 429 38 3093 39 165 40 267 41 255 42 1095 43 9 44 147 45 849 46 405 47 1491 48 177 49 1941 50 927 51 1125 52 1197 53 2001 54 333 55 519 56 1065 57 585 58 657 59 129 60 147 61 141 62 417 63 9 64 1623 65 99 66 2985 67 2469 68 4497 69 5259 70 597 71 7029 72 315 73 3081 74 2457 75 4161 76 603 77 3591 78 2697 79 3681 80 213 81 2079 82 1545 83 4089 84 165 85 1455 86 10287 87 1629 88 387 89 3321 90 14487 91 849 92 1467 93 3339 94 3747 95 6639 96 7737 97 8265 98 15735 99 5589 100 4107 101 9225 102 537 103 2079 104 1203 105 1515 106 1323 107 7245 108 6897 109 20631 110 2205 111 2175 112 3087 113 11145 114 7887 115 14841 116 2673 117 5961 118 3303 119 5565 120 3957 121 9849 122 1497 123 1125 124 1983 125 699 126 2565 127 8721 128 4467 129 5835 130 6063 131 1089 132 3117 133 1455 134 3105 135 6129 136 22365 137 3555 138 24453 139 8121 140 4143 141 1179 142 6903 143 309 144 11505 145 14121 146 17037 147 1419 148 17157 149 5715 150 345 151 13179 152 4497 153 3741 154 10803 155 105 156 30657 157 14439 158 14445 159 7569 160 17295 161 25425 162 6555 163 2121 164 3717 165 13731 166 7737 167 18711 168 765 169 1881 170 19335 171 32361 172 2847 173 2115 174 4155 175 1941 176 1383 177 24771 178 2277 179 10479 180 4287 181 441 182 19617 183 27261 184 2493 185 5481 186 28227 187 20175 188 1935 189 45 190 525 191 13719 192 8337 193 12495 194 18087 195 27099 196 9753 197 56745 198 4245 199 8265 200 63855 201 27261 202 69855 203 14199 204 1755 205 5529 206 1197 207 54639 208 69753 209 10461 210 10575 211 9 212 3615 213 26145 214 9225 215 5859 216 12255 217 6615 218 16653 219 18531 220 24087 221 6555 222 7947 223 12909 224 49203 225 49341 226 10857 227 3405 228 25665 229 19041 230 21255 231 2571 232 30015 233 47079 234 24915 235 77751 236 33333 237 16641 238 135 239 17289 240 10197 241 4059 242 1023 243 50319 244 22113 245 9915 246 17535 247 19041 248 15795 250 23007 251 5139 252 17787 253 15519 254 12957 255 1215 256 64647 257 9951 258 74253 259 2805 260 2475 261 15711 262 25767 263 9789 264 165 265 13209 266 19593 267 33105 269 969 270 98907 271 19335 272 22317 273 10635 274 13713 275 34245 276 41085 277 24129 278 26025 279 24579 281 3381 282 165 283 20175 284 23853 285 25881 286 61647 287 39315 288 2667 289 67695 290 34647 291 1899 292 33735 293 48861 294 2373 295 58179 296 66507 297 9609 298 20085 299 6405 301 44529 302 16575 303 22815 304 99297 305 21015 306 21075 307 91455 308 9993 309 15069 310 9543 311 79719 312 36195 313 14649 314 7605 315 67461 316 16035 317 12951 318 20295 319 41349 320 82473 321 20781 322 19293 323 88791 324 55605 325 23295 326 25473 327 10071 328 28653 329 48489 330 12477 331 7791 333 669 334 16437 335 42699 336 93765 337 12909 338 5253 339 23415 341 21585 342 76995 344 573 345 31719 346 15717 347 43011 348 33765 349 28149 350 71253 352 14727 353 85431 354 10545 355 7785 356 38853 357 70851 358 65385 359 9129 361 5049 362 49815 363 26871 365 9369 366 74763 367 18669 368 16905 369 49299 370 12543 371 3321 374 40257 375 26679 376 14223 377 23709 378 22713 379 66039 380 1023 381 67749 382 34683 385 72609 387 1701 388 56817 389 10791 390 39345 391 615 393 95151 394 67023 395 21315 396 28065 397 24039 398 19065 400 48207 401 28941 402 83337 404 22887 405 74085 406 35253 407 79215 408 31635 409 36825 410 50835 412 58065 413 86061 414 39513 415 17061 416 32025 417 30705 418 1743 419 71919 421 66075 422 84057 423 81651 424 65337 427 83139 428 36903 429 39039 431 66219 432 69477 433 50181 434 54033 435 5415 436 30987 438 24693 439 56259 440 25077 441 15255 442 18795 443 3921 444 35793 445 9345 446 18663 447 30849 448 57717 449 69285 451 26355 453 17631 454 65193 455 2085 456 9063 457 15561 458 4323 460 34725 461 92235 463 53991 464 63903 465 24351 466 12147 467 33351 468 2565 470 5547 472 8787 474 49053 475 13935 476 33375 477 33315 479 53019 484 50295 485 27975 488 7503 489 73671 490 37095 491 37719 492 1995 493 97449 494 39207 495 27261 497 99015 498 37755 500 52305 502 35397 503 66735 504 35877 505 74985 507 5565 511 43485 512 51765 514 53355 515 87951 516 12045 517 66375 519 83211 520 4257 521 17709 522 80175 523 76089 524 47403 525 5775 526 62337 527 43371 528 43137 529 10365 530 74367 534 84627 536 49893 537 23541 538 2007 539 12711 541 8031 543 40119 545 18801 546 297 547 5979 548 97293 550 26853 551 4035 552 29187 554 70923 555 67329 558 80385 560 39243 566 75225 567 28131 569 60411 570 25485 571 27909 572 20037 573 14259 574 70107 575 38835 580 88257 581 76569 582 22587 583 28005 584 15177 586 83175 588 50235 590 42777 592 86385 593 45315 596 41625 599 74229 600 82023 603 33885 610 86973 611 8781 612 47313 613 94005 615 34059 616 79353 617 29919 618 54015 619 18429 620 55203 621 46035 622 87795 623 12285 626 16323 635 52419 636 78033 643 91629 644 84045 647 24249 648 78453 650 3723 654 61353 655 38835 657 21999 658 75447 660 50943 661 77505 662 32067 669 58725 672 15993 677 3405 680 7605 684 24537 689 13689 690 46545 691 38229 692 47937 694 13197 695 2985 696 96813 703 5355 707 37149 710 60693 711 25029 713 92529 714 35817 717 78561 718 86193 720 89577 725 20115 726 213 727 35589 728 30933 734 50025 736 5013 737 11175 738 95937 740 51975 742 58683 743 48075 744 9753 745 9165 748 42777 750 22407 758 84057 762 48615 765 73059 767 315 768 65475 771 56199 773 62391 776 26775 780 51777 781 88299 786 58257 787 17481 788 20997 789 19485 793 98649 794 18495 799 95565 805 72861 809 47055 811 70539 813 10125 817 64401 821 49041 824 66975 827 12285 828 78375 829 1365 831 24609 833 49539 837 62361 841 86679 844 87303 846 61785 847 5265 852 53763 853 18885 856 87495 857 88095 858 63135 861 37359 863 93765 865 31575 867 60681 873 55209 874 75783 875 50565 877 31005 880 4107 882 17145 884 25833 886 87465 888 45675 889 59421 896 11925 898 59925 899 68901 903 23901 906 24747 908 88407 914 5673 921 94629 922 10533 925 50595 927 80139 928 79623 929 83271 933 94335 934 41727 936 52953 940 5955 945 60729 947 27825 948 61425 949 23805 950 13503 953 21741 954 45243 957 77805 958 66417 961 98061 965 7995 966 82995 969 77565 973 16011 976 68313 983 10485 988 97323 992 56685 994 24963 1007 37275 1008 48225 1013 74091 1014 35523 1018 19887 1028 98493 1032 177 1034 16233 1037 71421 1045 94065 1048 3885 1052 85845 1055 91755 1056 88515 1057 33405 1059 60099 1066 90165 1067 85911 1070 70623 1075 13131 1076 50025 1084 15315 1084 16665 1086 69417 1098 58287 1102 27435 1104 4275 1107 48681 1110 11007 1122 60513 1134 83205 1142 11007 1156 1035 1167 54339 1168 62823 1173 52461 1175 46791 1188 65613 1193 84435 1197 45201 1217 14199 1221 88329 1228 79203 1229 42399 1237 74109 1241 13629 1244 64233 1245 88575 1251 75705 1256 53865 1261 32265 1267 95229 1270 71805 1272 50655 1274 95847 1282 99105 1286 9183 1295 49119 1299 3339 1312 15657 1314 46965 1321 1065 1325 62265 1327 2625 1338 92115 1354 38565 1355 62289 1367 7755 1383 67821 1389 97899 1390 14877 1391 76479 1394 88155 1402 80103 1406 18003 1408 98475 1425 86205 1431 75519 1440 10083 1441 74031 1446 93837 1447 51651 1462 15927 1466 74505 1468 85077 1471 81489 1475 66381 1483 57891 1500 32547 1509 86361 1532 83973 1533 36045 1553 291 1556 81255 1566 42507 1599 15375 1603 89895 1616 78327 1623 33549 1625 65835 1640 34215 1652 33957 1660 20733 1672 56685 1676 96897 1677 24969 1678 34725 1689 27765 1718 51747 1721 45951 1757 41229 1763 29481 1767 84159 1786 42825 1793 95151 1794 98583 1820 79335 1823 57495 1849 87585 1858 29835 1860 13317 1869 82275 1880 22035 1900 4425 1933 39171 1954 8007 1966 63237 1971 3885 1985 31545 2024 10095 2083 84609 2112 59553 2129 11655 2138 40215 2162 33117 2182 53955 2185 66729 2191 4359 2196 24405 2213 6201 2253 75219 2255 7419 2278 43947 2280 25293 2333 43089 2470 60957 2473 52935 2498 56727 2501 86085 2518 94815 2529 33939 2569 79029 2637 89115 2679 61269 2685 93429 2695 59415 2707 32811 2743 52011 2748 84255 2821 6075 2827 20805 2834 61947 2844 58053 2846 10725 2867 36159 2887 88629 2899 69735 2945 12195 3004 57267 3017 5559 3074 90705 3104 58143 3179 41205 3215 43095 3229 49449 3283 1149 3426 34365 3460 2403 3503 83331 3551 36159 3553 4845 3587 51591 3601 88311 3641 69069 3646 40713 3722 5373 3826 4935 3830 21417 3846 24015 3867 31539 3873 88071 3891 80661 3942 34407 3989 49455 4335 32721 4619 66969 4787 74565 4884 22767 4901 2565 4997 31569 5147 58311 5154 88335 5316 43923 5396 85107 5459 82005 5738 58983 5907 5775 6177 79515 6593 45639 6634 4737 6885 33801 7170 77367 7618 74313 7631 54729 7727 74229 7768 33957 8060 69927 8160 31335 8335 3975 8529 459 8825 53985 9154 61593 9869 33891 10601 10941 10929 34911 11455 915 11493 57201 11710 78045 12178 73005 13153 3981 13466 44943 15263 88665 15770 74193 17372 77517 17527 14439 17705 96321 17987 88269 18989 56361 19742 98067 19817 53889 20023 7485 22312 31257 27652 70497 32430 51315 36172 47553 |
||
|
|
|
|
|
#33 |
|
Jun 2003
Suva, Fiji
2×1,021 Posts |
Here is a table of lowest k for each twin to n=1000
Does anyone want to take further? * denotes jumping champion Code:
1 3* 2 1 3 9* 4 15* 5 81* 6 3 7 9 8 57 9 45 10 15 11 99* 12 165* 13 369* 14 45 15 345 16 117 17 381* 18 3 19 69 20 447* 21 81 22 33 23 1179* 24 243 25 765 26 375 27 81 28 387 29 45 30 345 31 681 32 585 33 375 34 267 35 741 36 213 37 429 38 3093* 39 165 40 267 41 255 42 1095 43 9 44 147 45 849 46 405 47 1491 48 177 49 1941 50 927 51 1125 52 1197 53 2001 54 333 55 519 56 1065 57 585 58 657 59 129 60 147 61 141 62 417 63 9 64 1623 65 99 66 2985 67 2469 68 4497* 69 5259* 70 597 71 7029* 72 315 73 3081 74 2457 75 4161 76 603 77 3591 78 2697 79 3681 80 213 81 2079 82 1545 83 4089 84 165 85 1455 86 10287* 87 1629 88 387 89 3321 90 14487* 91 849 92 1467 93 3339 94 3747 95 6639 96 7737 97 8265 98 15735* 99 5589 100 4107 101 9225 102 537 103 2079 104 1203 105 1515 106 1323 107 7245 108 6897 109 20631* 110 2205 111 2175 112 3087 113 11145 114 7887 115 14841 116 2673 117 5961 118 3303 119 5565 120 3957 121 9849 122 1497 123 1125 124 1983 125 699 126 2565 127 8721 128 4467 129 5835 130 6063 131 1089 132 3117 133 1455 134 3105 135 6129 136 22365* 137 3555 138 24453* 139 8121 140 4143 141 1179 142 6903 143 309 144 11505 145 14121 146 17037 147 1419 148 17157 149 5715 150 345 151 13179 152 4497 153 3741 154 10803 155 105 156 30657* 157 14439 158 14445 159 7569 160 17295 161 25425 162 6555 163 2121 164 3717 165 13731 166 7737 167 18711 168 765 169 1881 170 19335 171 32361* 172 2847 173 2115 174 4155 175 1941 176 1383 177 24771 178 2277 179 10479 180 4287 181 441 182 19617 183 27261 184 2493 185 5481 186 28227 187 20175 188 1935 189 45 190 525 191 13719 192 8337 193 12495 194 18087 195 27099 196 9753 197 56745* 198 4245 199 8265 200 63855* 201 27261 202 69855* 203 14199 204 1755 205 5529 206 1197 207 54639 208 69753 209 10461 210 10575 211 9 212 3615 213 26145 214 9225 215 5859 216 12255 217 6615 218 16653 219 18531 220 24087 221 6555 222 7947 223 12909 224 49203 225 49341 226 10857 227 3405 228 25665 229 19041 230 21255 231 2571 232 30015 233 47079 234 24915 235 77751* 236 33333 237 16641 238 135 239 17289 240 10197 241 4059 242 1023 243 50319 244 22113 245 9915 246 17535 247 19041 248 15795 249 168831* 250 23007 251 5139 252 17787 253 15519 254 12957 255 1215 256 64647 257 9951 258 74253 259 2805 260 2475 261 15711 262 25767 263 9789 264 165 265 13209 266 19593 267 33105 268 45213 269 969 270 98907 271 19335 272 22317 273 10635 274 13713 275 34245 276 41085 277 24129 278 26025 279 24579 280 128505 281 3381 282 165 283 20175 284 23853 285 25881 286 61647 287 39315 288 2667 289 67695 290 34647 291 1899 292 33735 293 48861 294 2373 295 58179 296 66507 297 9609 298 20085 299 6405 300 230085* 301 44529 302 16575 303 22815 304 99297 305 21015 306 21075 307 91455 308 9993 309 15069 310 9543 311 79719 312 36195 313 14649 314 7605 315 67461 316 16035 317 12951 318 20295 319 41349 320 82473 321 20781 322 19293 323 88791 324 55605 325 23295 326 25473 327 10071 328 28653 329 48489 330 12477 331 7791 332 345675* 333 669 334 16437 335 42699 336 93765 337 12909 338 5253 339 23415 340 128625 341 21585 342 76995 343 153645 344 573 345 31719 346 15717 347 43011 348 33765 349 28149 350 71253 351 127305 352 14727 353 85431 354 10545 355 7785 356 38853 357 70851 358 65385 359 9129 360 162243 361 5049 362 49815 363 26871 364 210447 365 9369 366 74763 367 18669 368 16905 369 49299 370 12543 371 3321 372 138765 373 151839 374 40257 375 26679 376 14223 377 23709 378 22713 379 66039 380 1023 381 67749 382 34683 383 114951 384 126747 385 72609 386 114687 387 1701 388 56817 389 10791 390 39345 391 615 392 108195 393 95151 394 67023 395 21315 396 28065 397 24039 398 19065 399 102795 400 48207 401 28941 402 83337 403 101535 404 22887 405 74085 406 35253 407 79215 408 31635 409 36825 410 50835 411 273429 412 58065 413 86061 414 39513 415 17061 416 32025 417 30705 418 1743 419 71919 420 224415 421 66075 422 84057 423 81651 424 65337 425 237765 426 251475 427 83139 428 36903 429 39039 430 110157 431 66219 432 69477 433 50181 434 54033 435 5415 436 30987 437 102309 438 24693 439 56259 440 25077 441 15255 442 18795 443 3921 444 35793 445 9345 446 18663 447 30849 448 57717 449 69285 450 155463 451 26355 452 258345 453 17631 454 65193 455 2085 456 9063 457 15561 458 4323 459 104661 460 34725 461 92235 462 229227 463 53991 464 63903 465 24351 466 12147 467 33351 468 2565 469 108795 470 5547 471 139935 472 8787 473 184281 474 49053 475 13935 476 33375 477 33315 478 141315 479 53019 480 162897 481 233115 482 143163 483 150939 484 50295 485 27975 486 101055 487 156051 488 7503 489 73671 490 37095 491 37719 492 1995 493 97449 494 39207 495 27261 496 208845 497 99015 498 37755 499 131439 500 52305 501 207945 502 35397 503 66735 504 35877 505 74985 506 103107 507 5565 508 216243 509 107631 510 262035 511 43485 512 51765 513 134115 514 53355 515 87951 516 12045 517 66375 518 366555* 519 83211 520 4257 521 17709 522 80175 523 76089 524 47403 525 5775 526 62337 527 43371 528 43137 529 10365 530 74367 531 104409 532 347457 533 396441* 534 84627 535 278535 536 49893 537 23541 538 2007 539 12711 540 174297 541 8031 542 121065 543 40119 544 330015 545 18801 546 297 547 5979 548 97293 549 157209 550 26853 551 4035 552 29187 553 190485 554 70923 555 67329 556 130227 557 105381 558 80385 559 300561 560 39243 561 112581 562 176205 563 199989 564 117243 565 120069 566 75225 567 28131 568 239247 569 60411 570 25485 571 27909 572 20037 573 14259 574 70107 575 38835 576 247035 577 126615 578 136413 579 404871* 580 88257 581 76569 582 22587 583 28005 584 15177 585 210051 586 83175 587 173355 588 50235 589 133911 590 42777 591 389799 592 86385 593 45315 594 179163 595 257529 596 41625 597 268461 598 147135 599 74229 600 82023 601 135585 602 190695 603 33885 604 113475 605 264849 606 129705 607 368775 608 217143 609 228651 610 86973 611 8781 612 47313 613 94005 614 261075 615 34059 616 79353 617 29919 618 54015 619 18429 620 55203 621 46035 622 87795 623 12285 624 143265 625 104091 626 16323 627 140739 628 137907 629 223569 630 643737* 631 229749 632 506475 633 123891 634 242523 635 52419 636 78033 637 137835 638 227283 639 198459 640 558087 641 664941* 642 394203 643 91629 644 84045 645 274395 646 250923 647 24249 648 78453 649 109809 650 3723 651 205251 652 375843 653 624165 654 61353 655 38835 656 256605 657 21999 658 75447 659 101661 660 50943 661 77505 662 32067 663 374901 664 567573 665 258651 666 249345 667 127041 668 144717 669 58725 670 392013 671 130689 672 15993 673 178689 674 252693 675 376929 676 257613 677 3405 678 169893 679 469755 680 7605 681 217221 682 386127 683 151845 684 24537 685 243879 686 141705 687 246405 688 224625 689 13689 690 46545 691 38229 692 47937 693 152421 694 13197 695 2985 696 96813 697 102789 698 157587 699 436095 700 179865 701 317481 702 169827 703 5355 704 253995 705 330171 706 312387 707 37149 708 270177 709 158115 710 60693 711 25029 712 700005* 713 92529 714 35817 715 629211 716 118413 717 78561 718 86193 719 101361 720 89577 721 119721 722 150567 723 715449* 724 102213 725 20115 726 213 727 35589 728 30933 729 343359 730 308853 731 111285 732 142047 733 597339 734 50025 735 123585 736 5013 737 11175 738 95937 739 140481 740 51975 741 170625 742 58683 743 48075 744 9753 745 9165 746 131937 747 113271 748 42777 749 227871 750 22407 751 1025925 752 140967 753 110775 754 797433* 755 490281 756 490107 757 125169 758 84057 759 133521 760 404775 761 913671* 762 48615 763 242445 764 141243 765 73059 766 988437* 767 315 768 65475 769 484455 770 354417 771 56199 772 743433 773 62391 774 173667 775 125385 776 26775 777 188979 778 410187 779 239271 780 51777 781 88299 782 406707 783 108351 784 364203 785 193515 786 58257 787 17481 788 20997 789 19485 790 116103 791 217809 792 488805 793 98649 794 18495 795 119259 796 212157 797 526701 798 679623 799 95565 800 207663 801 291951 802 353127 803 267795 804 442227 805 72861 806 613383 807 136119 808 142785 809 47055 810 539157 811 70539 812 191085 813 10125 814 105537 815 234315 816 385887 817 64401 818 789453 819 377451 820 125385 821 49041 822 640677 823 268101 824 66975 825 134481 826 515955 827 12285 828 78375 829 1365 830 554925 831 24609 832 524217 833 49539 834 130323 835 155085 836 1175493* 837 62361 838 127905 839 238395 840 916815 841 86679 842 129237 843 122685 844 87303 845 451209 846 61785 847 5265 848 255693 849 163965 850 278427 851 382875 852 53763 853 18885 854 169407 855 157251 856 87495 857 88095 858 63135 859 555039 860 629997 861 37359 862 798315 863 93765 864 722967 865 31575 866 1744257* 867 60681 868 483735 869 399591 870 167967 871 1767711* 872 111027 873 55209 874 75783 875 50565 876 272085 877 31005 878 296043 879 622671 880 4107 881 134511 882 17145 883 430389 884 25833 885 1097925 886 87465 887 895101 888 45675 889 59421 890 910923 891 149091 892 115845 893 248349 894 173283 895 133875 896 11925 897 498981 898 59925 899 68901 900 105177 901 109305 902 1039227 903 23901 904 141615 905 344949 906 24747 907 248781 908 88407 909 179091 910 107457 911 551979 912 313485 913 127689 914 5673 915 136881 916 106413 917 233349 918 163377 919 280929 920 367023 921 94629 922 10533 923 382035 924 773367 925 50595 926 143403 927 80139 928 79623 929 83271 930 424167 931 2035431* 932 116385 933 94335 934 41727 935 390099 936 52953 937 164829 938 165537 939 369381 940 5955 941 202335 942 112053 943 317955 944 164787 945 60729 946 170085 947 27825 948 61425 949 23805 950 13503 951 385695 952 178173 953 21741 954 45243 955 351765 956 232947 957 77805 958 66417 959 399105 960 770193 961 98061 962 312297 963 1170699 964 177255 965 7995 966 82995 967 703701 968 514437 969 77565 970 113745 971 1390269 972 493173 973 16011 974 192255 975 947859 976 68313 977 230439 978 582717 979 262575 980 441357 981 402141 982 626943 983 10485 984 163497 985 411081 986 706773 987 1305255 988 97323 989 349521 990 417375 991 234291 992 56685 993 179445 994 24963 995 219069 996 237675 997 400941 998 330075 999 586899 1000 467343 Last fiddled with by robert44444uk on 2008-02-21 at 09:23 |
|
|
|
![]() |
| Thread Tools | |
Similar Threads
|
||||
| Thread | Thread Starter | Forum | Replies | Last Post |
| Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve | mickfrancis | Factoring | 2 | 2016-05-06 08:13 |
| Relativistic Twins | davar55 | Science & Technology | 68 | 2015-01-20 21:01 |
| 3x*2^n-1 and 3x*2^n-1 possibly twins ? | science_man_88 | Riesel Prime Search | 10 | 2010-06-14 00:33 |
| The Twins | GP2 | Lounge | 1 | 2003-11-18 04:50 |
| NOT twins | graeme | Puzzles | 11 | 2003-09-04 00:41 |