Karsten is correct. All similiarysized n's will have virtually the same weight over the long run meaning that if you test enough k's, all similiarly sized n's will have about the same # of primes. Although the weights (i.e. candidates remaining after sieving to some fixed depth like P=511) for all n's should be the same in the long run, the actual # of primes would decrease as the n's got higher simply because they are bigger numbers. :)
In theory, all n's should have primes for all bases or k's at some point so there would be no conjectured "Riesel n" or "Sierp n".
Karsten, I could never understand that whole excercise they did over at TPS with finding the first twin for each nvalue. It seemed like a waste of time. It's completely random what kvalue the first twin occurred at and it should be easy enough to prove that every n must have a twin for some k at some point.
Gary
Last fiddled with by gd_barnes on 20100417 at 04:46
