Thread: angle bisection
View Single Post
Old 2017-11-13, 12:33   #8
alpertron
 
alpertron's Avatar
 
Aug 2002
Buenos Aires, Argentina

2×733 Posts
Default

Quote:
Originally Posted by Dr Sardonicus View Post
tan(\frac{\alpha}{2})=\frac{sin(\frac{\alpha}{2})}{cos(\frac{\alpha}{2})}=<br />
\frac{2*sin(\frac{\alpha}{2})*cos(\frac{\alpha}{2})}{2*cos^{2}(\frac{\alpha}{2})}=<br />
\frac{sin(\alpha)}{(1+cos(\alpha))}=\frac{sin(\alpha)-sin(\alpha)*cos(\alpha)}{sin^{2}(\alpha)}<br />
=cosec(\alpha)-cot(\alpha)
It appears that you typed extra end of line characters inside the identities. After deleting these, we can see the formulas:

tan(\frac{\alpha}{2})=\frac{sin(\frac{\alpha}{2})}{cos(\frac{\alpha}{2})}=\frac{2*sin(\frac{\alpha}{2})*cos(\frac{\alpha}{2})}{2*cos^{2}(\frac{\alpha}{2})}=\frac{sin(\alpha)}{(1+cos(\alpha))}=\frac{sin(\alpha)-sin(\alpha)*cos(\alpha)}{sin^{2}(\alpha)}=cosec(\alpha)-cot(\alpha)
alpertron is offline   Reply With Quote