Thread: Parameter Underestimation View Single Post
 2010-09-29, 04:46 #5 Batalov     "Serge" Mar 2008 Phi(4,2^7658614+1)/2 47·197 Posts In redu2.c, the GGNFS/Franke siever uses double in the variant of the code that is used by practically everyone. However, the very latest version has the gmp mpz_t version: int reduce2(i32_t*,i32_t*,i32_t*,i32_t*,i64_t,i64_t,i64_t,i64_t,double); int reduce2gmp(i64_t*,i64_t*,i64_t*,i64_t*,mpz_t,mpz_t,double); Code: @ Note that we dont use lattice reduction to organize sieving with the factor base primes which are larger than the line length. Instead, we use a method based on the relation with continued fractions and diophantine approximations. Therefore, the code contained in this file is not time crtitical. @(redu2.h@>= int reduce2(i32_t*,i32_t*,i32_t*,i32_t*,i64_t,i64_t,i64_t,i64_t,double); int reduce2gmp(i64_t*,i64_t*,i64_t*,i64_t*,mpz_t,mpz_t,double); @ This is done in the straigthforward way. A basis is given by the fifth to eighth argument (|a0|,|b0|), (|a1|,|b1|). The reduced basis is written to the addresses given by the first four arguments. The ninth argument will often be larger than 1 an punishes large |b|. As a safeguard against numerical instability, the scalar products are recalculated from the modified vectors after each reduction step and not updated in a way which would save multiplications. Note again that this function is not likely time critical for lattice sieving. The scalar products of the two vector with themselves are called |a0sq| and |a1sq|. Their scalar product is called |s|.