Quote:
Originally Posted by ewmayer
Assuming your inputs are properly normalized, i.e. x,y < (2^p1), you break each into 32/33bit pieces according to the perword bitlengths in your list. (Balanceddigit representation is easy to achieve here, but not necessary for learning the basics.) Then multiply each of the D words of each sodiscretized input by the corresponding fractional power of 2, fwdFFT each resulting weighted input vector, dyadicmultiply the resulting lengthD forward transforms, invFFT the resulting vector, and multiply the resulting D discrete convolution outputs by the D inverse weights. The resulting outputs should be close enough to pureintegers that they can be confidently roundedtonearest and carries propagated. Check that the carrypropagated result matches x*y (mod 2^p1) computed using exact multiprecision integer arithmetic.

Thx for that.
My current code is below. I think I am close. I can smell victory! I know I am missing the transfer back to the balanced int (to get the actual result of the operation), but I want to get the first iteration working (4x4 mod M) before tackling that.
Code:
import numpy as np
import math
q = 521
#Q = 163
D = 16
d = np.array([np.ceil((q * i) / D)  np.ceil(q*(i1) / D) for i in range(0, D)]) #creates the bit length array
print(d)
a = np.array([2**(np.ceil(q * j/D)  (q * j/D)) for j in range(0, D)]) #creates the weight signal array
print(a)
ainv = np.array([(1.0/a[i]/D) for i in range(0, len(a))]) #creates the inverse weight signal array
print("Inverted A: " + str(ainv))
i_hiBitArr = [int(0)] * D
dsignal = [int(0)] * D
llint_signal = [int(0)] * D
llint_signal[0] = 4
for i in range(0, q2):
ival = llint_signal[i]
print("Ival: " + str(ival))
if (i == 0):
ival += i_hiBitArr[D1]
else:
ival += i_hiBitArr[i]
dsignal[i] = ival * a[i]
print(str(dsignal))
C = np.fft.fftn(dsignal, norm="forward")
print("First C: " + str(C))
C = C * C
print("Squared C: " + str(C))
DD = np.fft.irfft(C, norm="backward")
print("Inversed C value: " + str(DD))
if i == 0:
sig = DD[i] * ainv[i]  2
else:
sig = DD[i] * ainv[i]
print(sig)
llint_signal[i] = np.around(sig)
dsignal[i] = sig
#using carry steps from Crandall Book
z = llint_signal
outputarr = [None] * len(z)
carry = 0
for n in range(0, len(z)1):
B = 2**d[n+1]
v = z[n] + carry
outputarr[n] = math.remainder(v, B)
carry = np.floor(v//B)
print("Carry " + str(n) + ": " + str(carry))
print("V " + str(n) + ": " + str(v))
print("B " + str(n) + ": " + str(B))
print("outputarr " + str(n) + ": " + str(outputarr))
print(outputarr)
exit()
Is this implemented correctly? If so, how do I convert that outputarr to the actual result of the sxs mod M operation in the lucas lehmer test?
Sarah