Do I need group theory for this?
Consider an n x n matrix where all the entries are either 1 or 0.
How many possible matrices are there for each n, allowing for rotation and reflection.
I get 1,2,6,... for n=0,1,2... I've been enumerating n=3, but I haven't finished yet. 1,2,6 isn't much to go on at OLEIS, otherwise I'd poke around there. I know that group theory deals with operations on a set and relates to symmetry, but I don't know much more than that. Would there be an application here? (if there is an application of group theory here, but a better approach, please put both as I would like a concrete example to apply group theory to)
|