View Single Post
 2014-04-10, 20:27 #17 tapion64   Apr 2014 5·17 Posts Apparently after some amount of time you can't edit posts, so sorry for multiple posts. Some basic estimations of running time for the original Atkin's is O(N/log(log(N))). If we assume a clock rate of 1 GHz on the GPU and 384 cores and we're doing primes up to 2^65, that takes around 185 days (6 months). With the modified algorithm, we only look from 2^64 through 2^65, which halves the work, and we assume that atleast 1/2 of primes being filtered out as not +/-1 mod 8. Thus we're looking at about 1 and half months (possibly less, need to see how removing the square sieving affects running time) just to iterate through the primes. Since we previously assumed 1/2 the primes are filtered out, we're dealing with 208 quadrillion inputs. With the same clock rate and cores before, and exponential time using quadratic sieve for the 65 bit numbers, 1 core could factor roughly 2048 of them per second, gives us roughly 8306 years of computing time. Ok, yeah, that's a bottleneck. My earlier calculations were off by a factor of 100, which is enough. I should see if there's a better fit for calculating the multiplicative order that doesn't require factoring, possibly make a modified naive algorithm that takes into account the qualities of p which will work for numbers of this size. Last fiddled with by tapion64 on 2014-04-10 at 20:36