View Single Post
Old 2007-01-07, 20:58   #47
tnerual
 
tnerual's Avatar
 
Oct 2006

7×37 Posts
Default

looking at all messages above, here are the actual work to do ... with reservation (limited)

it includes all confirmed observation:

base 10 maybe screwed at the end (see post 49 or 50 from citrix and the possible bug in srsieve)

Code:
Base 6:

Sierpinski 
1 to 243417
Reisel
1 to 213409

Base 7:

Totally horrible. Possible covering set with repeat every 24 n is [19,5,43,1201,13,181,193,73], also 5 other sets perming 73, 193 and 409.

Sierpinski and Riesel numbers are both lower than 162643669672445

Work is needed to find a low k value which is Riesel or Sierpinski.

Base 8:

Sierpinski
1
Riesel (done?)

Base 9:

Sierpinski (done ?)
Riesel
4 jasong 
16
36
64 
Note 16 and 64 are subsets of 4.

Base 10:

Sierpinski
804*10^n+1
1024*10^n+1
2157*10^n+1
2661*10^n+1
4069*10^n+1
5028*10^n+1
5512*10^n+1
5565*10^n+1
6172*10^n+1
7404*10^n+1
7666*10^n+1
7809*10^n+1
8194*10^n+1
8425*10^n+1
8667*10^n+1
8889*10^n+1
9021*10^n+1
9175*10^n+1
Riesel
1343*10^n-1
1803*10^n-1
1935*10^n-1
2276*10^n-1
2333*10^n-1
3356*10^n-1
4016*10^n-1
4421*10^n-1
4478*10^n-1
6588*10^n-1
6665*10^n-1
7019*10^n-1
8579*10^n-1
9701*10^n-1
9824*10^n-1
10176*10^n-1

Base 11:

Sierpinski
416 tnerual
958 tnerual
Riesel
62
682
862
904
1528
2410
2690
3110
3544
3788
4208
4564

Base 12:

Sierpinski
1 to 14599
Riesel
1 to 16328.

Base 13:

Sierpinski (done) 
Riesel
288

Base 14: done

Base 15:

Horrible. A covering set is [241,113,211,17,1489,13,3877], and Sierpinski and Riesel values are therefore less than 7330957703181619. As bad as the base 3 problem.

Base 16:

Sierpinski number not known,
186 (to be removed see post #49 below by citrix)
2158 (tested up to n=4000 by citrix)
2857 (tested up to n=4000 by citrix)
2908 (tested up to n=4000 by citrix)
3061 (tested up to n=4000 by citrix)
4885 (tested up to n=4000 by citrix)
5886 (tested up to n=4000 by citrix)
6348 (tested up to n=4000 by citrix)
6663 (tested up to n=4000 by citrix)
6712 (tested up to n=4000 by citrix)
7212 (tested up to n=4000 by citrix)
7258 (tested up to n=4000 by citrix)
7615 (tested up to n=4000 by citrix)
7651 (tested up to n=4000 by citrix)
7773 (tested up to n=4000 by citrix)
8025 (tested up to n=4000 by citrix)
10001 to 66740
Riesel
1343*16^n-1
1803*16^n-1
1935*16^n-1
2333*16^n-1
3015*16^n-1
3332*16^n-1
4478*16^n-1
4500*16^n-1
4577*16^n-1
5499*16^n-1
5897*16^n-1
6588*16^n-1
6633*16^n-1
6665*16^n-1
7019*16^n-1
7602*16^n-1
8174*16^n-1
8579*16^n-1
10001 to 33965

Base 17:

Sierpinski 
92 (LTD)
160 (LTD)
244 (LTD)
262 (LTD)
Riesel (done)


Base 18:

Sierpinski
18 xentar
324 xentar
122 xentar
381 xentar
Riesel (done)

Base 19:
?

Base 20: 
?

Base 21:

Sierpinski 
118 (checked to n=3500)
riesel (done)

Base 22:

Sierpinski
22
484
942
1611
1908
2991
4233
5061
5128
5659
6234
6462
Riesel
185
1013
1335
2853
3104
3426
3656
4001
4070
4118
4302
4440

Last fiddled with by tnerual on 2007-01-07 at 21:56 Reason: with info up to post 50
tnerual is offline